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a b s t r a c t 

This work compares the transition and competitive mechanism between three types of in- 

stabilities of an incompressible dielectric tube: wrinkling, pull-in instability and electric 

breakdown. We also see how to select one type of instability mode on demand. First, we 

investigate the finite response and the wrinkling of a tube subject to a combination of 

applied radial voltage, torsion and axial force (or stretch). We use the surface impedance 

matrix method to determine the wrinkling threshold, and obtain the corresponding two- 

dimensional pattern shape of wrinkled surface. Second, we look at illustrative numerical 

calculations for ideal Mooney-Rivlin dielectrics and study the effects of actuation meth- 

ods, electric voltage, torsion and geometrical parameters on the three types of instabilities. 

Results show that the deformation of the solid will influence the true electric field in the 

solid, and induce competitive effects between the applied voltage and the mechanical load- 

ing. We find that in addition to the expected contractile buckling, buckling may also occur 

in extension in an electrically actuated dielectric tube, a departure from the purely elastic 

wrinkling. Moreover, the electro-elastic behavior of the DE elastomer can be enhanced by 

introducing torsion. We also find that large stable actuation can be achieved and that the 

wrinkling pattern can be selected on demand in the tube by finely tuning the actuation, 

voltage, torsion and geometry, without encountering material failure. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Dielectric elastomers (DEs) have received extensive attention due to their promising applications in biomedical engineer-

ing, soft robots, adaptive optics, high-performance actuators and sensors, etc. ( Brochu & Pei, 2012; Duduta, Hajiesmaili, Zhao,

Wood, & Clarke, 2019; O’Halloran, O’malley, & McHugh, 2008; Rasmussen, 2012 ). Pelrine, Kornbluh, and Joseph (1998) first

proposed the so-called tubular DE actuator consisting of a thin-walled cylindrical elastomeric tube sandwiched between two

compliant electrodes on its inner and outer faces. With the application of a voltage through the electrodes, the interposed

tube wall is squeezed, causing a radial expansion and an axial elongation ( Cameron, Szabo, Johnstone, Massey, & Leidner,

2008; Carpi & De Rossi, 2004 ). By cyclically activating and de-activating the DE tube, the inner volume of the tube can be

changed repeatedly to control the inlet and outlet of gases or liquids. One potential use of such mechanism is for manu-

facturing large-volume pumps ( Brown & Lai, 2009; Wang et al., 2018 ). Tubular DE actuators can be manufactured through

well-established industrial processes, such as extrusion and flexible dip-coating techniques. ( Arora, Ghosh, & Muth, 2007;

Stoyanov, Kofod, & Gerhard, 2008 ). Compared with planar DE actuators, tubular DE actuators are less bulky and more ver-

satile for applications ( Cameron et al., 2008; Stoyanov et al., 2008; Zhu, Stoyanov, Kofod, & Suo, 2010 ). 
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Instability analysis for DE devices is of considerable theoretical and industrial significance. However, the coupled par-

tial differential equations governing the wrinkling behavior of DEs are difficult to solve, even numerically, due to geomet-

ric/physical non-linearities and multi-physics coupling. Robust numerical strategies should be developed for solving the re-

sulting dispersion equations. 

From a practical viewpoint, DEs may suffer from more failure modes than purely elastic elastomers, such as pull-in (snap-

through) instability ( Pelrine, Kornbluh, Pei, & Joseph, 20 0 0; Zhao & Suo, 2007; Zurlo, Destrade, DeTommasi, & Puglisi, 2017 ),

electric breakdown ( Dissado & Fothergill, 1992; Stark & Garton, 1955; Zhang et al., 2017 ), buckling instability ( Bertoldi &

Gei, 2011; Gei, Colonnelli, & Springhetti, 2014; Goshkoderia & Rudykh, 2017 ), localized necking ( Fu, Dorfmann, & Xie, 2018a;

Fu, Xie, & Dorfmann, 2018b ) and bulging ( Che, Lu, & Wang, 2017; Lu, An, Li, Yuan, & Wang, 2015; Wang, Yuan, Lu, & Wang,

2017 ), which pose clear limitations on developing DE devices. Moreover, there are complicated transitions and competitions

between these failure modes, and thus a comprehensive comparison is required for reliability analysis. 

On the other hand, these instability modes can be seen as beneficial: hence, the electromechanical coupling behavior of

DEs can generate complex 3D patterns, useful to control surface shapes ( Pang et al., 2020; Wang, Gossweiler, Craig, & Zhao,

2014 ); similarly, the large actuation induced by the pull-in instability is eagerly pursued in DE actuators to produce giant

changes in surface area ( Huang et al., 2012 ). 

Compared with planar DE devices, instability analysis in tubular devices is complicated by geometrical complexity and

finite deformation inhomogeneity. Singh (1966) first studied the static response of a DE tube under radial electric field.

Dorfmann and Ogden (20 05, 20 06) investigated the azimuthal shear, extension and inflation responses of a DE tube subject

to a radial electric field. Later, they specialized the boundary value problem to the Gent dielectric model in a review article

( Dorfmann & Ogden, 2017 ) to illustrate numerically the influence of the applied electric field on the deformation of the

tube. Zhu et al. (2010) studied the finite deformation of a pre-stressed DE tube and analyzed the snap-through instability

using the so-called Hessian approach. They indicated that it can be enhanced by applying pre-stress along the length. Note

that the Hessian approach cannot predict inhomogeneous wrinkling-type instabilities, which requires incremental analysis. 

Shmuel and deBotton (2013) and Wu, Su, Chen, and Zhang (2017) studied axisymmetric and circumferential waves in a

finitely deformed DE tube subject to a radial voltage, respectively. Note that the vanishing of the wave speed corresponds

to the threshold of wrinkling instability. Su, Zhou, Chen, and Lü (2016a) ; Su, Wang, Zhang, and Chen (2016b) examined

non-axisymmetric waves and the wrinkling instability of an incompressible DE tube. They obtained analytical dispersion

equations in terms of Bessel functions by assuming a homogeneous finite pre-deformation. Bortot and Shmuel (2018) and

Melnikov and Ogden (2018) studied the prismatic and axisymmetric 2D wrinkling of a DE tube subject to a radial voltage

and an axial pre-stretch. Lu et al. (2015) investigated electromechanical bulging instability in a finitely deformed DE tube.

They obtained the equilibrium and stability governing equations from the first and second variations of the free energy

of the thermodynamic system. Their tube is considered thin and the mechanical and electric fields are assumed to be

homogeneous to simplify the analysis. 

With this paper, we propose a theoretical analysis of finite deformation and the associated 3D wrinkling-type instability

(or buckling) of an incompressible DE tube subject to the combined action of a radial electrical voltage and mechanical

loads. We consider not only the wrinkling instability , but also the instabilities due to pull-in (snap-through) and to electric

breakdown , and examine the transition and competition between these failures. Additionally, we study the effect of actuation

methods on the nonlinear response and the stability of the tube. 

The originality and innovative aspects of the current paper include 

• Presenting a 3D wrinkling analysis for a DE tube subject to a radially inhomogeneous electric field, an axial force (or

stretch), and twisting moments applied at the top and bottom faces. Here we note that most of the existing work so far

is concerned with 2D wrinkling instability of DE tubes, while a 3D analysis reveals more information about the various

modes actually selected in the instability process, especially for a tube with finite length. 

• Investigating the extensional wrinkling mode in a stretched DE tube, which does not occur in purely elastic solids with

Mooney-Rivlin or neoHookean strain energy. So far only contractile wrinkling has been considered for DE tubes and

not the extensional wrinkling mode, which may occur in stretched DE films, see Fig. 1 and Su, Broderick, Chen, and

Destrade (2018) . 

• Revealing the competitive effects between voltage and mechanical loadings, and investigating the influence of actuation

method on the finite deformation and instabilities of the tube. 

• Investigating the transition and competitive mechanism between failure modes in a DE tube. Instabilities in DE elastomers

have been well investigated. Here we find scenarios where one instability triggers another, and propose a rational ap-

proach for designing stable structural patterns on demand and obtaining stable large actuation deformations of DE tubes.

The paper is structured as follows. In Section 2 , we derive the governing equations for a finitely deformed DE tube

subject to a radial voltage, internal pressure, an axial pre-stretch and a torsion, based on the nonlinear theory of electro-

elasticity developed by Dorfmann and Ogden (2005, 2016) . Note that there are some other electroelasitc models proposed,

for example, by Yang and Hu (2004) , Romeo (2011) , Poya et al. (2018) , etc. We then formulate the linearized incremental

equations of motion in Section 3 . To solve the incremental boundary value problem, we use the surface impedance matrix

method, a robust numerical procedure for deriving the threshold for the onset of the instability. 

In Section 4 , we illustrate the actuation methods of the tube and specialize the formulas obtained in Sections 2 and 3 to

ideal Mooney-Rivlin dielectric models. Here two problems corresponding to two different loading paths are considered. In the
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Fig. 1. Wrinkles in a stretched DE film, which may occur before or during the snap-through instability ( Plante & Dubowsky, 2006 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

first problem, the tube is subject to a fixed radial voltage and a torsion where the top and bottom ends of the tube move

under the action of an axial force F : the force-tuning problem . In the second problem, the tube is subject to a fixed axial pre-

stretch, a torsion created by moments applied at the top and bottom faces and a variable radial voltage: the voltage-tuning

problem . 

The numerical analysis for each problem is detailed in Sections 5 and 6 , respectively, where the influences of actuation

methods, geometrical parameters of the tube, electric field and mechanical loading on the transition and competition of

instabilities are investigated. Moreover, we find the condition for the occurrence of extensional buckling in the solid. Finally

in Section 7 , we draw some conclusions. 

2. Finite deformation of a DE tube 

Consider an isotropic, incompressible DE tube with initial length L , inner radius R i and outer radius R o , respectively, as

illustrated in Fig. 2 (a). Here and thereafter, the physical parameters at the inner and outer faces of the tube are indicated

with the subscripts ‘ i ’ and ‘ o ’, respectively. The inner and outer faces of the tube are covered with two flexible electrodes

(carbon grease for example), which don’t play a mechanical role during the deformation. 

Using the referential cylindrical system ( R , �, Z ), a material particle in the undeformed configuration is labeled by its

position vector X ( R , �, Z ). The dimensionless lengths R o = R o /R i and L = L/H are adopted to denote the initial radius and

length aspect ratios, respectively, where H = R o − R i is the undeformed thickness of the tube. 

The DE tube deforms finitely, subject to the combined action of a voltage V across the thickness, an internal pressure P

on the inner face, a mechanical load F along the length and a torsion at the two faces of the tube with closed ends. Using

the current cylindrical system ( r, θ , z ), the material particle X takes up the position x ( r, θ , z ) in the deformed configuration.

Taking incompressibility of the material into account, the deformation is given by Ogden (1997) 

R 

2 − R 

2 
i = λz (r 2 − r 2 i ) , θ = � + γ λz Z, z = λz Z, (1)

where γ is the torsion angle per unit length (the twist), λz is the uniform axial stretch of the tube, r i and r o are inner and

outer radii of the deformed tube, respectively. The length and thickness of the deformed tube are l = λz L and h = r o − r i ,

respectively, as depicted in Fig. 2 (b). 

Then the deformation gradient F = ∂ x /∂ X reads 

F = 

⎡ 

⎢ ⎣ 

∂ r/∂ R (1 /R ) ∂ r/∂ � ∂ r/∂ Z 

r∂ θ/∂ R (r/R ) ∂ θ/∂ � r∂ θ/∂ Z 

∂ z/∂ R (1 /R ) ∂ z/∂ � ∂ z/∂ Z 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎣ 

λ−1 λ−1 
z 0 0 

0 λ γλz r 

0 0 λz 

⎤ 

⎦ , (2)

where λ = r/R is the circumferential stretch . Note that due to the material incompressibility constraint we have det F = 1 , so

that the imposed deformation is volume preserving. 

From Eq. (1) , we establish the following relationship between the circumferential stretches at the inner and outer sur-

faces λi = r i /R i and λo = r o /R o and the axial stretch λz of the deformed tube, 

λo = 

1 

R o 

√ 

1 

λz 

(
R 

2 

o + λz λ2 
i 

− 1 

)
. (3)

The deformed radial ratio is derived as 

r o = 

r o 

r 
= 

λo R o 

λ
, (4)
i i 
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Fig. 2. Sketch of a DE tube in the (a) undeformed and (b) deformed configurations. The upper row presents three dimensional images of the tubes and 

the lower row shows the associated in-plane cross sections. 

 

and the ratio of the inner volume of the deformed tube to that in the undeformed configuration is 

� = λ2 
i λz . (5) 

For this problem, the nominal electric field and the electric displacement vectors are 

E l = 

[
E R 0 0 

]T 
, D l = 

[
D R 0 0 

]T 
, (6) 

where E R and D R are the only non-zero components of the nominal electric field and electric displacement, respectively.

Then the true electric field and electric displacement in the deformed configuration can be obtained as 

E = F −T E l = 

[
E r 0 0 

]T 
, D = F D l = 

[
D r 0 0 

]T 
, (7) 

where E r = λλz E R and D r = λ−1 λ−1 
z D R , according to Eqs. (2) and (6) . 

The Maxwell equation reads 

div D = 

1 

r 

∂(rD r ) 

∂r 
= 0 , (8) 

here, so that rD r is a constant. 

According to the nonlinear electroelasticity ( Dorfmann & Ogden, 20 05; 20 06 ), the nominal electric field is obtained as 

E R = 

∂W 

∂D R 

, (9) 

where W = W ( λ, λz , D R ) is a reduced energy function. 

Finally, the applied voltage is 

V = 

∫ r o 

r i 

E r d r = 

∫ r o 

r i 

λλz 
∂W 

∂D R 

d r. (10) 

On the other hand, the non-zero components of the Cauchy stress are ( Su, Wu, Chen, & Destrade, 2019 ) 

τrr = 2 λ−2 λ−2 
z 	1 − 2 λ2 λ2 

z 	2 + 2 λ−2 λ−2 
z D 

2 
R 	5 + 4 λ−4 λ−4 

z D 

2 
R 	6 − q, 

τθθ = 2(λ2 + γ 2 λ2 
z r 

2 )	1 − 2 λ−2 	2 − q, 
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τzz = 2 λ2 
z 	1 − 2 

(
λ−2 

z + γ 2 λ−2 r 2 
)
	2 − q, 

τθz = τzθ = 2 γ r 
(
λ2 

z 	1 + λ−2 	2 

)
, (11)

where 	i = ∂ 	/∂ I i (i = 1 , 2 , 4 , 5 , 6) , 	 is the energy function of the solid which can be expressed in terms of the following

five invariants 

I 1 = tr c , I 2 = tr 
(
c −1 

)
, I 4 = D l · D l , I 5 = D l · c D l , I 6 = D l · c 2 D l , (12)

with c = F T F being the right Cauchy-Green deformation tensor, 

q = p − 2	2 , (13)

with p being a Lagrange multiplier associated with the incompressibility constraint, to be determined from the equilibrium

equations and boundary conditions. 

The equations of equilibrium reduce to 

∂τrr 

∂r 
+ 

1 

r 
( τrr − τθθ ) = 0 . (14)

Using Eq. (14) and the boundary conditions τrr (r i ) = −P and τrr (r o ) = 0 , the relation between λi , λo and V can be estab-

lished as 

P = 

∫ r o 

r i 

(τθθ − τrr ) 
d r 

r 
= 

∫ λo 

λi 

τθθ − τrr 

λ(1 − λz λ2 ) 
d λ. (15)

Here the relationship 

d r 

r 
= 

d λ

λ
(
1 − λz λ2 

) , (16)

has been used, which results from Eq. (1) . The expression of the applied voltage V can be obtained by combining

Eqs. (10) and (15) . 

The radial stress τ rr is obtained as 

τrr = 

∫ λ

λi 

τθθ − τrr 

λ(1 − λz λ2 ) 
d λ − P. (17)

As a result, the full stress distribution in the deformed tube can be determined from Eq. (11) . The axial mechanical load

applied at the end of the tube follows as 

F = 2 π

∫ r o 

r i 

τzz r d r − π r 2 i P. (18)

Finally, the nonlinear response of the DE tube can be determined by solving the above equations. 

3. Linearized stability analysis 

An extremely deformed dielectric may eventually buckle, a phenomenon which can be modelled by a linearized incre-

mental wrinkling analysis ( Bertoldi & Gei, 2011; Bortot & Shmuel, 2018; Goshkoderia & Rudykh, 2017; Melnikov & Ogden,

2018; Su et al., 2019 ). Hence, superimpose a 3D small harmonic inhomogeneous incremental deformation u = u ( x ) along

with an incremental electric displacement ˙ D l in the deformed configuration of the tube, with components in the form 

u i = u i (r, θ, z) , ˙ D l0 i = 

˙ D l0 i (r, θ, z) i = r, θ, z. (19)

Hereinafter, incremental quantities are identified by a superimposed dot. 

The governing equations are the incremental equations of equilibrium 

div ̇ T = 0 , div ̇  D = 0 , curl ̇  E = 0 , (20)

and of incompressibility 

div u = 0 , (21)

where ˙ T and 

˙ E are push-forward forms of incremental Cauchy stress and incremental electric filed, respectively. They can

be written as ( Dorfmann & Ogden, 2016 ) 

˙ T = A ( grad u ) + � ˙ D + p( grad u ) − ˙ p I , ˙ E = �T ( grad u ) + K 

˙ D , (22)

where the fourth-, third- and second-order tensors A , � and K are the effective electroelastic moduli, with Cartesian com-

ponents 

A piq j = A q jpi = F pαF qβ
∂ 2 ˜ 	

∂ F iα∂ F jβ
, 
piq = 
ipq = F pαF −1 

βq 

∂ 2 ˜ 	

∂ F iα∂ D lβ
, 
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K i j = K ji = F −1 
αi 

F −1 
β j 

∂ 2 ˜ 	

∂ D lα∂ D lβ
. (23) 

Here, ˜ 	 = 

˜ 	( F , D l ) = 	(I 1 , I 2 , I 4 , I 5 , I 6 ) is the augmented free energy function. The non-zero components of the electro-

elastic moduli with respect to the specific deformation gradient (2) for ideal dielectrics ( Section 4.2.1 ) are listed in

Appendix A . 

According to Eq. (20) 3 , the incremental electric field can be expressed as ˙ E = −grad 

˙ φ, where ˙ φ is an incremental electric

potential. 

The solutions of the incremental problem can be expanded in series in the form 

u r = 

∞ ∑ 

n =0 

U r (r) e i (nθ+ kz) , u θ = 

∞ ∑ 

n =0 

U θ (r) e i (nθ+ kz) , 

u z = 

∞ ∑ 

n =0 

U z (r) e i (nθ+ kz) , ˙ φ = 

∞ ∑ 

n =0 

�(r) e i (nθ+ kz) , 

˙ T rr = 

∞ ∑ 

n =0 

�rr (r) e i (nθ+ kz) , ˙ T rθ = 

∞ ∑ 

n =0 

�rθ (r) e i (nθ+ kz) , 

˙ T rz = 

∞ ∑ 

n =0 

�rz (r) e i (nθ+ kz) , ˙ D r = 

∞ ∑ 

n =0 

�r (r) e i (nθ+ kz) , (24) 

where U r , U θ , U z , �, �rr , �r θ , �rz and �r are scalar functions of r only, n = 0 , 1 , 2 . . . is the circumferential wavenumber , and

k is the axial wavenumber , which can be connected to the length L using the lateral incremental boundary condition at the

ends of the tube z = 0 , � . 

The incremental boundary conditions on the curved faces r = r i and r = r o read, respectively, 

˙ T 0 rr = P 
∂u r 

∂r 
+ 

˙ P , ˙ T 0 rθ = 

P 

r 

(
∂u r 

∂θ
− u θ

)
, ˙ T 0 rz = P 

∂u r 

∂z 
, ˙ φ = 0 , (25) 

and 

˙ T 0 rr = 

˙ T 0 rθ = 

˙ T 0 rz = 

˙ φ = 0 , (26) 

where P is a prescribed constant thus ˙ P ≡ 0 . 

To solve this boundary value problem, we use the surface impedance matrix method to build a robust numerical procedure.

First, the incremental governing Eqs. (20) –(22) are recast in the form of a first-order differential system ( Destrade, An-

naidh, & Coman, 2009; Su et al., 2019 ), 

d 

d r 
η(r) = 

i 

r 

[
G 

a G 

b 

G 

c ( G 

a ) † 

]
η(r) , (27) 

where † denotes the Hermitian operator, 1 and 

η(r) = 

[
U r U θ U z i r�r i r�rr i r�rθ i r�rz �

]T = 

[
U S 

]T 
, (28) 

is the Stroh vector, and U = 

[
U r U θ U z i r�r 

]T 
, S = 

[
i r�rr i r�i rθ i r�rz �

]T 
are the generalized displacement 

and traction vectors, respectively. The derivation of Eq. (27) and the components of the 4 × 4 submatrixes G a , G b and G c are

given in Appendix B for reference. Note that the orthogonality of trigonometric functions have been used to derive Eq. (28) .

Now the incremental boundary conditions (25) and (26) read, respectively, 

S (r i ) = P 

⎡ 

⎢ ⎣ 

−1 −n −kr 0 

−n −1 /r 0 0 

−kr 0 0 0 

0 0 0 0 

⎤ 

⎥ ⎦ 

U (r i ) , (29) 

and 

S (r o ) = 0 . (30) 
1 A simple example for a 2 × 2 matrix: [
a 1 i a 2 
a 3 i a 4 

]† 

= 

[
a 1 a 3 

−i a 2 −i a 4 

]
, 

where a 1 − a 4 are real numbers. 
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Fig. 3. DE tubes coated with two compliant electrodes on the inner and outer faces activated by different loading protocols. 
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Then, define the so-called conditional impedance matrix z i ( r, r i ), linking the traction and the displacement vectors as 

S (r) = z i (r, r i ) U (r) . (31)

Substituting Eq. (31) into Eq. (27) , and eliminating U , gives a Riccati differential equation for z i , 

d z i 

d r 
= 

1 

r 

[
−i z i G 

a + z i G 

b z i + G 

c + i ( G 

a ) † z i 
]
. (32)

Now integrate Eq. (32) from r i to r o , with the following initial and stop conditions derived by combining Eqs. (29) –(31) ,

z i (r i , r i ) = P 

⎡ 

⎢ ⎣ 

−1 −n −kr 0 

−n −1 /r 0 0 

−kr 0 0 0 

0 0 0 0 

⎤ 

⎥ ⎦ 

, det z i (r o , r i ) = 0 . (33)

The wrinkling behavior of the tube is governed by Eqs. (32) and (33) , from which the critical axial stretch for the onset

of instability is found numerically, 

λc 
z = λc 

z (k, n ; R o , V, γ ) , (34)

for given wavenumber k , buckling mode n (the number of circumferential wrinkles), radius ratio R o , voltage V and twist γ . 

Once Eq. (32) is solved, the ratios of the incremental displacements on the outer face of the tube t θ = U θ (r o ) /U r (r o ) ,

 z = U z (r o ) /U r (r o ) , t � = �(r o ) /U r (r o ) follow from S (r o ) = z i (r o , r i ) U (r o ) = 0 . These give the wrinkling shape on the outer face

of the tube. To obtain the through-thickness displacement fields in the tube, we integrate another Riccati equation, 

d z o 

d r 
= 

1 

r 

[
−i z o G 

a + z o G 

b z o + G 

c + i ( G 

a ) † z o 
]
. (35)

from the outer r = r o to the inner face r = r i , this time for the other conditional impedance matrix z o ( r, r o ), which is such

that 

S (r) = z o (r, r o ) U (r) . (36)

Now the full distribution of the incremental field U and the corresponding buckling pattern of the tube can be obtained by

a simultaneous numerical integrations of Eq. (35) and the first of Eq. (27) , i.e. 

d 

d r 
U = 

i 

r 
G 

a U − 1 

r 
G 

b z o U , (37)

from r o to r i , with initial conditions 

z o (r o , r o ) = 0 , U (r o ) = U(r o ) 
[
1 t θ t z t �

]T 
. (38)

Here U ( r o ) is a constant, of an amplitude which cannot be determined by our linear stability analysis. 

4. Loading methods and material model 

4.1. Loading methods 

In this section, we consider two different loading methods to activate the DE tube, see Fig. 3 , 

• Problem I: Force Tuning . The tube is subject to a fixed voltage V attached to its inner and outer faces, a fixed amount of

torsion with twist γ and a varying axial force F . 

• Problem II: Voltage Tuning . The tube is subject to a fixed axial constraint λz , a fixed amount of torsion with twist γ and
a varying radial voltage V . 
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4.2. Material model 

4.2.1. Ideal dielectric model 

For the constitutive response of the DE tube, we consider the so-called ideal dielectric elastomer , with energy function of

the form 

	 = W (I 1 , I 2 ) + 

ε 

2 

I 5 , (39) 

where ε is the permittivity of the solid, which is independent of deformation, W is derived from any isotropic purely elastic

strain-energy function. 

The true electric field in ideal dielectrics can be determined from Eqs. (8) , (10) and (39) as 

E r = 

V 

ln r o 

1 

r 
. (40) 

The dimensionless radial stress τ rr = τrr /μ is obtained from Eqs. (17) and (39) as 

τ rr = f (λ) − V 

2 
g(λ) − P , (41) 

where μ is the shear modulus of the solid in the absence of voltage and 

f (λ) = 

(
	1 λ

−2 
z + 	2 

)(
λ−2 − λ−2 

i 

)
− 2 

(
	1 λ

−1 
z + 	2 λz 

)
ln 

λ

λi 

+ 

	1 γ
2 λ2 

z 

(
λ2 − λ2 

i 

)
L 

2 (
R o − 1 

)2 (
1 − λz λ2 

) , 

g(λ) = 

1 

2 

(
R o − 1 

ln r o 

)2 
[ 

1 

λ2 
i 

− λz λ2 − 1 

λ2 
(
λz λ2 

i 
− 1 

)
] 

. (42) 

In Eqs. (41) and (42) the following non-dimensional quantities have been used 

V = 

V 

H 

√ 

ε 

μ
, γ = γ L, P = 

P 

μ
, 	i = 

	i 

μ
(i = 1 , 2) , 	5 = 

	5 

ε 
. (43) 

Then the dimensionless circumferential and axial stresses τ θθ = τθθ /μ and τ zz = τzz /μ follow from Eqs. (11) and (39) . 

Using Eq. (41) and the boundary condition τrr (r o ) = 0 , the applied voltage can be expressed as 

V = 

λi r o ln r o 

R o − 1 

√ 

2 f (λo ) − 2 P 

r 
2 
o − 1 

. (44) 

4.2.2. Ideal Mooney-Rivlin dielectric model 

For numerical illustration, we take the ideal Mooney-Rivlin dielectric elastomer with elastic energy density W given by

Rivlin and Saunders (1951) 

W (I 1 , I 2 ) = 

c 1 
2 

(I 1 − 3) + 

c 2 
2 

(I 2 − 3) , (45) 

where c 1 , c 2 are positive material constants that satisfy the relationship c 1 + c 2 = μ. 

For convenience and some generality, we introduce the following dimensionless measures of the wavenumber, axial force,

elastic parameters and electric field, 

k = k (R o − R i ) , F = 

F 

π(R 

2 
o − R 

2 
i 
) 
, 

c i = 

c i 
μ

(i = 1 , 2) , E r = E r 

√ 

ε 

μ
. (46) 

For the ideal Mooney-Rivlin dielectric elastomer (45) , we have 

	1 = 

c 1 
2 

, 	2 = 

c 2 
2 

, 	5 = 

1 

2 

. (47) 

For our calculations, we use the material parameters c 1 = 1 . 858 × 10 5 Pa , c 2 = 0 . 1935 × 10 5 Pa (so that c 1 = 0 . 9 , c 2 =
0 . 1 ) ( Batra, Mueller, & Strehlow, 2005 ) and set the dimensionless breakdown electric field of the dielectric elastomer as

E 
B = E B 

√ 

ε/μ = 2 ( Getz, Kochmann, & Shmuel, 2017 ), where E B is the dielectric strength of the material. 

In the following calculations, we set P ≡ 0 and focus on the effects of the axial loading F , radial voltage V and torsion γ
on the nonlinear deformation and the instability behavior of the DE tube. The radius and length aspect ratios of the tube

are taken to be R o = 1 . 4 and L = 6 , respectively, if not stated otherwise. 
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Fig. 4. Effect of the applied voltage V on the nonlinear responses of (a) inner circumferential stretch λi and (b) inner non-dimensional true electric field 

E ri versus the axial stress F of a Mooney-Rivlin DE tube with c 1 = 0 . 9 , γ = 0 and R o = 1 . 4 for Problem I-Force Tuning. The thresholds for pull-in instability 

and electric breakdown of the elastomer are marked by circles and crosses, respectively. The horizontal arrows represent the rapid stretch expected once 

the pull-in threshold is reached, until the electric breakdown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Results for problem I: force tuning 

5.1. Nonlinear response 

Fig. 4 presents the nonlinear response of a Mooney-Rivlin DE tube with no torsion ( γ = 0 ) and an increasing series of

fixed voltage V = 0 . 0 , 0 . 5 , 1 . 0 subject to varying mechanical loadings F (Problem I). Both compressive ( F < 0 ) and tensile

( F ≥ 0 ) loadings are considered. 

In the purely elastic case V = 0 , the F − λi curve is monotonic: the tube shrinks circumferentially when subject to an

axial extension, and expands circumferentially under axial compression. 

With electromechanical coupling ( V � = 0 ), the F − λi curve can become non-monotonic. The DE tube always expands

circumferentially under axial compressive stress ( F < 0 ), and the response is independent of the applied voltage when the

stress is sufficiently large, as all the curves superpose. On the other hand, the tube shrinks first and then expands as the

axial stress increases ( F > 0 ). The physical mechanism behind the non-monotonic response of the tube can be understood

as follows. In the early stages of the applied tensile stress, the mechanical loading dominates: the tube shrinks and the

circumferential stretch decreases. As the stress increases, the tube thins, leading to an increase of the true electric field in

the solid. Then the voltage plays a key role, making the tube expands as the circumferential stretch increases. 

From Eq. (40) we note that E ri , the true electric field on the inner face, is always larger than E ro , the electric field on

the outer face. Thus the solid fails by electric breakdown once E ri exceeds the dielectric strength of the solid E 
B = 2 . It can

be seen that for tubes subject to a high electrical voltage, pull-in instability may occur in the solid as the load F reaches

a critical value. In this case, the tube expands dramatically and will eventually fail by electric breakdown. This predicted

sudden expansion of a DE tube subject to electromechanical loadings may provide a novel approach for designing large-

volume fluid pumps ( Wang et al., 2018 ). 

Fig. 5 displays the nonlinear response of a Mooney-Rivlin DE tube for an increasing series of fixed torsion γ = 0 . 0 , 0 . 7 , 1 . 0

and a fixed voltage V = 0 . 5 , subject to varying mechanical loadings F (Problem I). It can be observed that the application

of torsion enhances the pull-in stability of the tube. When the applied torsion is sufficiently large, the pull-in instability of

the tube can be suppressed (blue curve). Note that electric breakdown failure can happen prior to pull-in instability in a

torsional tube (red curve). 

5.2. Instability analysis 

We plot the wrinkling dispersion curves in Fig. 6 for a Mooney-Rivlin DE tube with c 1 = 0 . 9 and R o = 1 . 4 subject to an

increasing voltage V = 0 , 0 . 3 , 0 . 6 , 0 . 8 and no torsion γ = 0 . Here we use the notation λV 
z to denote the axial stretch of the

tube induced by the voltage only (when F = 0 , γ = 0 ). 

First of all, we validate the analysis in Fig. 6 (a) by recovering some known results for the buckling of a purely elastic tube

by taking V = 0 ( Goriely, Vandiver, & Destrade, 2008 ). From Eq. (34) , a series of dispersion branches can be obtained by

taking n = 0 , 1 , . . . , 4 . We see that the tube is always stable in extension ( λz ≥ λV 
z = 1 ), and can only buckle in contraction

( λz < λV 
z ), once the stretch reaches the highest points of the λc 

z − k curve, i.e., the bold black curve. For slender tubes with

small k , the Euler buckling mode n = 1 is dominant. As k increases, higher buckling modes can be induced, depending on
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Fig. 5. Effect of the applied torsion γ on the nonlinear responses of (a) inner circumferential stretch λi and (b) inner non-dimensional true electric field 

E ri versus the axial stress F of a Mooney-Rivlin DE tube with c 1 = 0.9 and R o = 1 . 4 for Problem I-Force Tuning. The thresholds for pull-in instability and 

electric breakdown of the elastomer are marked by circles and crosses, respectively. 

Fig. 6. Plots of the critical axial stretch λc 
z versus the dimensionless axial wave number k for buckling of a voltage activated ( V = 0 , 0 . 3 , 0 . 6 , 0 . 8 ) Mooney- 

Rivlin DE tube with γ = 0 , c 1 = 0 . 9 and R o = 1 . 4 for a range of mode numbers n = 0 , 1 , . . . , 4 . (a) and (b): Subject to a low voltage, the tube can only 

buckle in contraction. (c) and (d): Subject to a higher voltage, the dielectric tube can buckle in extension as well, always in the n = 0 barrelling mode. The 

blue dot-dashed line denotes the axial stretch of the tube induced by the voltage only. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

the dimensions of the tube. For short and thick tubes with large k , the first unstable mode is the first barrelling mode n = 0 .

The surface instability criterion of Biot for an elastic half-space is recovered as k → + ∞ ( Biot, 1965 ). 

For the case V = 0 . 3 , the solid can also only buckle in contraction. The tube expands axially to λV 
z > 1 following the

application of the voltage V . Fixing the voltage and increasing the contraction, the solid buckles once the stretch reaches a

critical value λc 
z , depending on the wavenumber k . 
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Fig. 7. Plots of the critical axial stretch λc 
z versus the dimensionless axial wave number k for buckling of a Mooney-Rivlin DE tube with c 1 = 0 . 9 and 

R o = 1 . 4 subject to no voltage ( V = 0 ) and a series of increased fixed amounts of torsion γ = 0 . 0 , 1 . 5 , 2 . 0 , for a range of mode numbers n = 0 , 1 , . . . , 4 . The 

blue dot-dashed line denotes the axial stretch of the tube induced by the torsion only. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 8. Transition and competition between buckling, electric breakdown, and pull-in instabilities of Mooney-Rivlin DE tubes with c 1 = 0 . 9 and R o = 1 . 4 

subject to voltages V = 0 . 6 , 0 . 8 . The red dot-dashed and blue solid lines correspond to the onsets of the pull-in instability and electric breakdown ( E ri = 

E 
B = 2 ) of the tube, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the cases V = 0 . 6 , 0 . 8 , we see that in addition to contractile buckling, the possibility of buckling in extension for the

tube has now emerged (see Su et al. (2018) for this possibility in plane DE plates). Increasing the stretch of the tube beyond

λV 
z , the solid buckles once the stretch reaches the lowest point of the upper branches of the dispersion curves. It should

be noted that the tube always buckles in the mode n = 0 when it is extremely stretched. The maximal allowable actuation

decreases as the applied voltage increases. 

In Fig. 7 we examine the effect of the torsion γ on the wrinkling dispersion curve for a Mooney-Rivlin DE tube with

c 1 = 0 . 9 , R o = 1 . 4 and V = 0 . Here we use the notation λγ
z to denote the axial stretch of the tube induced by the torsion

only (when F = 0 , V = 0 ). 

Due to the Poynting effect , an axially free tube ( F = 0 ) elongates to λγ
z > 1 once the torsion is applied. Fixing the tor-

sion and sufficiently compressing the tube will buckle the structure ( Ciarletta & Destrade, 2014 ). Observe here how the

application of torsion suppresses higher mode buckling. 

Fig. 8 presents the effect of the applied voltage V on instabilities transitions (buckling, electric breakdown and pull-in

instability) in Mooney-Rivlin DE tubes with c 1 = 0 . 9 , γ = 0 and R o = 1 . 4 . Here only the meaningful λc 
z − k curve is pre-

sented. Note that pull-in and electric breakdown do not occur in a compressed DE tube: we thus only consider the case of

a stretched DE tube to look at the competition between the three instability modes. 

When V = 0 . 6 (figure on the left), we see that under a tensile axial force, buckling occurs first for slender tubes such that

k ≤ 0 . 23 . For thicker and stubbier tubes such that k ≥ 0 . 49 , the tensile axial force stretches the tube safely until λmax 
z ≈ 1 . 66

(red dot-dashed line), where the pull-in instability is triggered. Then the tube expands dramatically, with sudden decrease

in thickness and increase in true electric field, until it fails by electric breakdown once E ri reaches the threshold E 
B 

i = 2 . For

tubes with 0 . 23 < k < 0 . 49 , buckling occurs before electric breakdown in the tube, although it is transient and unstable. 

When V = 0 . 8 (figure on the right), buckling pattern occurs first in extension for slender tubes and also for shorter and

thicker tubes, as long as k < 0 . 75 . Then for tubes such that 0 . 75 < k < 1 . 5 , pull-in instability takes over and leads again to

buckling instability, before failure by electric breakdown. 
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Fig. 9. Transition and competition between buckling, electric breakdown, and pull-in instabilities of Mooney-Rivlin DE tubes with c 1 = 0 . 9 and R o = 1 . 4 

subject to a fixed voltage V = 0 . 5 and a varying torsion γ = 0 , 0 . 7 , 1 . The red dot-dashed and blue solid lines correspond to the onsets of the pull-in 

instability and electric breakdown ( E ri = E 
B = 2 ) of the tube, respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 displays the effect of the applied torsion γ on instabilities transitions in Mooney-Rivlin DE tubes with c 1 = 0 . 9

and R o = 1 . 4 subject a voltage V = 0 . 5 . When there is no torsion ( γ = 0 ), the pull-in instability will be triggered first as the

axial stretch increases and the tube will fail by electric breakdown finally, which is consistent with the result presented in

Fig. 5 (green curve). It can be seen that the application of a large torsion (e.g., γ = 0 . 7 ) will make the electric breakdown

failure occur first (see the red curve in Fig. 5 ). Increasing the torsion further (e.g., γ = 1 . 0 ) can suppress the pull-in instability

of the solid (see also the blue curve in Fig. 5 ). Note that applying torsion can not only suppress the pull-in instability, but

also increase the threshold value for electric breakdown. As a result, the maximal allowable stretch of the tube can be

increased. This observation may a provide a solid basis for designing high-performance DE sensors and actuators. 

We now quantify better the concepts of slenderness and stubbiness, by linking k to the dimensions of the tube. We

assume that the centre of the top face be directly aligned with that of the bottom face. This boundary condition can be

achieved when ( Ciarletta & Destrade, 2014 ) 

k = 

2 mπ

λz 

R o − R i 

L 
, (48) 

where the positive integer m is the number of the axial wrinkles. 

Using Eq. (34) and the relationship (48) , we plot in Fig. 10 the critical stretch and pattern shapes for buckling of DE

tubes with specific radius and length aspect ratios R o and L subject to a voltage V and a torsion γ . In the purely elastic

case ( V = 0 , first four rows), the tube may only buckle in contraction. Here Cases (a), (c) and (d) show that increasing L

or decreasing R o destabilizes the solid. From Cases (a) and (b) we can see that the critical axial stretch increases as the

applied torsion increases. Applying a voltage ( V � = 0 , last three rows) increases the critical stretch for contractile buckling

and creates the possibility of extensional buckling. Note that the tube always buckles in a trumpet-shape ( m = 1 , n = 0 ) for

buckling in extension. Various buckling modes can be designed on demand in a DE tube by finely tuning V , R o , γ and L . 

6. Results for problem II: voltage tuning 

6.1. Nonlinear response 

Fig. 11 shows the nonlinear deformation of a Mooney-Rivlin DE tube with c 1 = 0 . 9 and R o = 1 . 4 when the deformation

is driven by voltage (Problem II). Here the V − λi curve is monotonic, and the pull-in instability of the solid is suppressed.

The material eventually fails by electric breakdown at the inner face r = r i as the applied voltage reaches a critical value. 

In Fig. 11 (a), we consider the tube without torsion γ = 0 and investigate the influence of axial pre-stretch λz on the

deformation. It can be observed that the application of pre-stretch increases the maximal actuation stretch λmax 
i 

/λ0 
i 
, a char-

acteristic which is eagerly pursued in sensors and actuators ( Zhao & Suo, 2007 ). Here λ0 
i 

= (λz ) 
−1 / 2 is the initial inner

circumferential stretch induced by axial mechanical pre-stretch. Fig. 11 (b) shows the effect of torsion γ on the deformation

of the tube. We see that torsion can enhance the electro-elastic behavior of the solid by increasing the maximal allowable

voltage. 

6.2. Instability analysis 

Fig. 12 presents the buckling behavior of a Mooney-Rivlin DE tube with c 1 = 0 . 9 , R o = 1 . 4 and subject to the axial con-

straint λz = 1 (no change in length) and γ = 0 (no torsion). With the application of a radial voltage, the tube is expected

to expand and elongate. Because of the axial constraint, compressive stresses may develop in the tube, which may lose its

stability once the voltage exceeds a critical threshold. For a slender tube (small k ), the Euler buckling mode ( n = 1 ) occurs

first. In particular, an extremely thin tube with k → 0 is not able to sustain even a small compression, and the solid buckles
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Fig. 10. Effects of the voltage V , radius ratio R o , torsion γ and length aspect ratio L on the buckling behavior of a DE tube. The critical points for buckling 

instability are marked by crosses. 
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Fig. 11. Effects of (a) torsion γ and (b) axial pre-stretch λz on the V − λi response of a Mooney-Rivlin DE tube with c 1 = 0 . 9 and R o = 1 . 4 . The critical 

points for electric breakdown are marked by crosses. 

Fig. 12. Plots of the critical voltage V 
c 

versus the dimensionless axial wave number k for buckling of a Mooney-Rivlin DE tube with c 1 = 0 . 9 , R o = 1 . 4 and 

subject to λz = 1 and γ = 0 for a range of mode numbers n = 0 , 1 , . . . , 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as soon as a small voltage is applied. Other buckling modes are induced as k increases: n = 1 for 0 ≤ k ≤ 0 . 12 , n = 2 for

0 . 12 ≤ k ≤ 0 . 42 , n = 0 for k ≥ 0 . 42 . 

In Fig. 13 we show the influence of axial pre-stretch λz on the transition and competitive mechanism between buckling

and electric breakdown in the tube (note for Problem II, there is no pull-in instability). 

We see from Case (a) in the figure that for a slender tube with k ≤ 0 . 1 , the pre-compression λz = 0 . 9 is sufficient to

make the tube buckle. By contrast, a thicker tube with k > 0 . 1 can sustain the pre-compression: it eventually loses its

stability with the application of an additional radial voltage V . Then buckling always occurs first, and the electric breakdown

criterion is not reached. It follows that in principle, we can design and fabricate voltage-induced smart surfaces and patterns

in compressed solids ( λz < 1) without encountering material failure. 

In Case (b), where λz = 2 . 5 , and Case (c), where λz = 3 . 5 , we see that the application of a pre-stretch ( λz > 1) shifts

the threshold for buckling upward and the threshold for electric breakdown downward, respectively. When the pre-stretch

is λz = 2 . 5 , buckling occurs first in slender tubes, while electric breakdown is the dominant failure for thick tubes. The

transition from one instability to the other occurs at k ≈ 0 . 1 . When the pre-stretch is large (e.g., λz = 3 . 5 ), the solid always

fails by electric breakdown first, as the voltage exceeds a threshold value. In that case, it is not possible to design and

fabricate stable patterns for the tube. Notice that a tube subject to large pre-stretch always buckles in the mode m 

c = 1 ,

n c = 0 . 

Fig. 14 presents the effect of torsion on the transition and competitive mechanism between buckling and electric break-

down of the voltage-actuated tube. We see that for an axially constrained ( λz = 1 here) slender tube, the applied torsion

will lead to buckling due to the Poynting effect. A thicker tube with larger k can sustain the torsion and an additional radial
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Fig. 13. Transition and competition between buckling and electric breakdown of Mooney-Rivlin DE tubes with c 1 = 0 . 9 , γ = 0 and R o = 1 . 4 subject to 

varying axial constraints λz = 0 . 9 , 2 . 5 , 3 . 5 . In this problem, the pull-in instability of the solid is suppressed. The black solid line corresponds to the mean- 

ingful dispersion curve for buckling instability of the elastomer, and the blue solid line represents the onset of electric breakdown of the solid E ri = E 
B = 2 . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. Effect of torsion on the transition and competition between buckling and electric breakdown of Mooney-Rivlin DE tubes with c 1 = 0 . 9 , λz = 1 

and R o = 1 . 4 (problem II). The black and blue solid lines correspond to the buckling and electric breakdown curves of the elastomer with no torsion 

( γ = 0 ), respectively, and the black and blue dashed lines represent the buckling and electric breakdown curves of the elastomer subject to a torsion 

γ = 2 , respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

voltage is required to buckle it. Note that the applied torsion can enhance the DE tube by increasing the critical electric

breakdown voltage. 

7. Conclusion 

In conclusion, we have investigated the influences of the applied voltage, mechanical loading, structural geometry and

actuation method on the finite response and incremental buckling behavior of a DE tube. Additionally, we also considered

the pull-in (snap-through) instability and electric breakdown of the elastomer, and compared the transition and competitive

mechanisms between these failures. In particular, two alternative problems were considered: Force tuning (Problem I) and

voltage tuning (Problem II). 

In the first problem (I), we found that the thinning of the tube will induce a competitive effect between the voltage and

the mechanical force. The applied voltage increases the critical value of the voltage for buckling of the solid and creates

the possibility of extensional buckling, which is absent in a purely elastic elastomer. Various buckling modes ( m, n ) can be

selected for contractile buckling by tuning the length and thickness of the tube. While for extensional buckling, the tube

always buckles in a trumpet-shape ( m = 1 , n = 0 ). 

In the second problem (II), the V − λi curve is monotonic, and the snap-through instability of the solid will be suppresse

d. For the purely elastic case V = 0 , a slender tube with small k cannot sustain even a small axial compression ( λz < 1)

and will lose its stability immediately. The applied axial pre-stretch will increase the voltage threshold for buckling and

decrease that for electric breakdown. As a result, electric breakdown will be the dominant failure mode in the solid when

the pre-stretch is sufficiently large. 

Due to the Poynting effect, the DE tube elongates with torsion γ . For both cases, the critical electric breakdown voltage

of the tube can be increased by introducing torsion. We proposed the approaches for designing stable structural patterns on
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demand, without encountering material failure: Increasing the radial voltage V for problem I or decreasing the axial force F 

for problem II. 
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Appendix A. Non-zero electro-elastic moduli 

For the considered problem, the non-zero components of the instantaneous electro-elastic moduli for ideal dielectrics

(39) read 
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+ λ4 
[
2 r 2 γ 2 λ6 

z 	11 + 4 λ2 
z 	12 + λ4 

z (	1 + 2	22 ) 
]}

, 

A 2233 = 4 λ−4 λ−2 
z 

{
r 2 γ 2 λ2 

z 	22 + λ2 (2 r 2 γ 2 λ4 
z 	12 + 	22 ) 

+ λ6 λ2 
z 

[
λ4 

z (	12 + r 2 γ 2 	12 ) + λ2 
z (	11 + 	2 ) + 	22 

]
+ λ8 λ4 

z (	12 + λ2 
z 	22 ) + λ4 

[
2 λ2 

z 	12 + λ4 
z 	22 + r 2 γ 2 λ4 

z (λ
2 
z 	11 + 	22 ) 

]}
, 

A 2323 = 2 λ−4 λ−2 
z 

{
λ6 λ2 

z 	1 + λ4 
[
r 2 γ 2 λ4 

z (	1 + 2 λ2 
z 	11 ) + 	2 

]
r 2 γ 2 λ2 λ2 

z (4 λ2 
z 	12 + 	2 ) + 2 r 2 γ 2 λ2 

z 	22 

}
, 

A 2332 = λ−4 
[
−2 λ6 λ2 

z 	2 + 4 r 2 γ 2 (λ4 λ4 
z 	11 + 2 λ2 λ2 

z 	12 + 	22 ) 
]
, 
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A 2333 = 2 rγ λ−4 
{

2 λ6 λ4 
z 	12 + λ2 (4 λ2 

z 	12 + 	2 ) + 2	22 + λ4 λ2 
z 

[
	1 + 2(λ2 

z 	11 + 	22 ) 
]}

, 

A 3131 = 2 λ2 
z (	1 + λ2 	2 ) , 

A 3232 = 2 λ−4 
[
λ4 λ2 

z (	1 + 2 r 2 γ 2 λ2 
z 	11 ) + λ2 (4 r 2 γ 2 λ2 

z 	12 + 	2 ) + 2 r 2 γ 2 	22 

]
, 

A 3233 = 4 λ−4 rγ
[
2 λ2 λ2 

z 	12 + λ6 λ4 
z 	12 + 	22 + λ4 λ2 

z (λ
2 
z 	11 + 	22 ) 

]
, 

A 3333 = 2 λ−4 
[
λ2 (4 λ2 

z 	12 + 	2 ) + λ6 λ2 
z (4 λ2 

z 	12 + 	2 ) + 2	22 

+2 λ8 λ4 
z 	22 + λ4 λ2 

z (	1 + 2 λ2 
z 	11 + 4	22 ) 

]
. (A.1)


111 / 2 = 
122 = 
133 = 
212 = 
313 = 2 D r 	5 . (A.2)

K 11 = K 22 = K 33 = 2	5 . (A.3)

Appendix B. Derivation of the Stroh formulation 

The components of the incremental stress and electric field (22) for the ideal dielectric material can be expanded as 

˙ T rr = ( A 1111 + p ) 
∂u r 

∂r 
+ A 1122 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ A 1123 

(
1 

r 

∂u z 

∂θ
+ 

∂u θ

∂z 

)

+ A 1133 
∂u z 

∂z 
+ 
111 

˙ D r − ˙ p , 

˙ T θθ = A 1122 
∂u r 

∂r 
+ ( A 2222 + p ) 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ A 2232 

∂u θ

∂z 
+ A 2223 

1 

r 

∂u z 

∂θ

+ A 2233 
∂u z 

∂z 
+ 
221 

˙ D r − ˙ p , 

˙ T zz = A 1133 
∂u r 

∂r 
+ A 2233 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ A 2333 

1 

r 

∂u z 

∂θ
+ A 3233 

∂u θ

∂z 

+ ( A 3333 + p ) 
∂u z 

∂z 
+ 
0331 

˙ D r − ˙ p , 

˙ T rθ = A 1212 
∂u θ

∂r 
+ ( A 1221 + p ) 

1 

r 

(
∂u r 

∂θ
− u θ

)
+ A 1213 

(
∂u z 

∂r 
+ 

∂u r 

∂z 

)
+ 
122 

˙ D θ , 

˙ T rz = A 1313 
∂u z 

∂r 
+ ( A 1331 + p ) 

∂u r 

∂z 
+ A 1312 

[
∂u θ

∂r 
+ 

1 

r 

(
∂u r 

∂θ
− u θ

)]
+ 
133 

˙ D z , 

˙ T θ r = A 2121 
1 

r 

(
∂u r 

∂θ
− u θ

)
+ ( A 1221 + p ) 

∂u θ

∂r 
+ A 2113 

∂u z 

∂r 
+ A 2131 

∂u r 

∂z 
+ 
122 

˙ D θ , 

˙ T θz = A 2323 
1 

r 

∂u z 

∂θ
+ (A 2332 + p) 

∂u θ

∂z 
+ A 2223 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ A 2311 

∂u r 

∂r 
+ A 2333 

∂u z 

∂z 
, 

˙ T zr = A 3131 
∂u r 

∂z 
+ (A 1331 + p) 

∂u z 

∂r 
+ A 3112 

∂u θ

∂r 
+ A 3121 

1 

r 

(
∂u r 

∂θ
− u θ

)
+ 
133 

˙ D z , 

˙ T zθ = A 3232 
∂u θ

∂z 
+ (A 2332 + p) 

1 

r 

∂u z 

∂θ
+ A 3211 

∂u r 

∂r 
+ A 3222 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ A 3233 

∂u z 

∂z 
, 

˙ E r = −∂ ˙ φ

∂r 
= 
111 

∂u r 

∂r 
+ 
221 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ 
331 

∂u z 

∂z 
+ K 11 

˙ D r , 

˙ E θ = −1 

r 

∂ ˙ φ

∂θ
= 
122 

[
1 

r 

(
∂u r 

∂θ
− u θ

)
+ 

∂u θ

∂r 

]
+ K 22 

˙ D θ , 
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˙ E z = −∂ ˙ φ

∂z 
= 
133 

(
∂u r 

∂z 
+ 

∂u z 

∂ r 

)
+ K 33 

˙ D z . (B.1) 

The components of the incremental equilibrium Eq. (20) 1 and the incremental Maxwell Eq. (20) 2 are 

∂ ˙ T 0 rr 

∂r 
+ 

1 

r 

∂ ˙ T 0 θ r 

∂θ
+ 

˙ T 0 rr − ˙ T 0 θθ

r 
+ 

∂ ˙ T 0 zr 

∂z 
= 0 , 

∂ ˙ T 0 rθ
∂r 

+ 

1 

r 

∂ ˙ T 0 θθ

∂θ
+ 

˙ T 0 θ r + 

˙ T 0 rθ
r 

+ 

∂ ˙ T 0 zθ
∂z 

= 0 , 

∂ ˙ T 0 rz 

∂r 
+ 

1 

r 

∂ ˙ T 0 θz 

∂θ
+ 

∂ ˙ T 0 zz 

∂z 
+ 

˙ T 0 rz 

r 
= 0 , (B.2) 

and 

∂ ˙ D l0 r 

∂r 
+ 

1 

r 

(
∂ ˙ D l0 θ

∂θ
+ 

˙ D l0 r 

)
+ 

∂ ˙ D l0 z 

∂z 
= 0 , (B.3) 

respectively. 

The incompressibility condition Eq. (21) for the incremental motion reads 

∂u r 

∂r 
+ 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ 

∂u z 

∂z 
= 0 . (B.4) 

First, rewriting Eq. (B.4) using solutions (24) gives 

U 

′ 
r = 

i 

r 
( i U r − nU θ − krU z ) . (B.5) 

Next, from Eqs. (B.1) 4,5,11,12 and (24) we obtain 

U 

′ 
θ = 

i 

r 
[ a 1 U r + i a 2 U θ + a 3 ( i r�rθ ) + a 4 ( i r�rz ) + a 5 �] , 

U 

′ 
z = 

i 

r 
[ b 1 U r + i b 2 U θ + b 3 ( i r�rθ ) + b 4 ( i r�rz ) + b 5 �] , (B.6) 

where 

a 1 = −n + 

(A 1213 kr − nγ13 ) τrr 

A 

2 
1213 

− γ12 γ13 

, b 1 = −kr + 

(A 1213 n − krγ12 ) τrr 

A 

2 
1213 

− γ12 γ13 

, 

a 2 = −1 − γ13 τrr 

A 

2 
1213 

− γ12 γ13 

, b 2 = 

A 1213 τrr 

A 

2 
1213 

− γ12 γ13 

, 

a 3 = 

γ13 

A 

2 
1213 

− γ12 γ13 

, b 4 = 

γ12 

A 

2 
1213 

− γ12 γ13 

, 

a 4 = b 3 = 

A 1213 

−A 

2 
1213 

+ γ12 γ13 

, b 5 = 

A 1213 nK 33 
122 − K 22 kr
133 γ12 

A 

2 
1213 

K 22 K 33 − K 22 K 33 γ12 γ13 

, 

a 5 = 

A 1213 krK 22 
133 − K 33 n 
122 γ13 

A 

2 
1213 

K 22 K 33 − K 22 K 33 γ12 γ13 

, 

γ12 = A 1212 −

2 

122 

K 22 

, γ13 = A 1313 −

2 

133 

K 33 

. (B.7) 

Substitution of Eqs. (B.1) 11,12 and (24) into Eq. (B.2) 1 results in 

( i r�r ) 
′ = 

i 

r 

{
−
[

n 
122 

K 22 
( n + a 1 ) + 

kr
133 

K 33 
( kr + b 1 ) 

]
U r − i 

[
n 
122 

K 22 
( 1 + a 2 ) + 

kr
133 b 2 
K 33 

]
U θ

−
(


122 n 

K 22 

a 3 + 


133 kr 

K 33 

b 3 

)
( i r�rθ ) −

(

122 n 

K 22 

a 4 + 


133 kr 

K 33 

b 4 

)
( i r�rz ) 

−
(

n 

2 

K 22 

+ 

k 2 r 2 

K 33 

+ 


122 n 

K 22 

a 5 + 


133 kr 

K 33 

b 5 

)
�

}
. (B.8) 
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We then substitute Eqs. (B.1) 1,2,6,8,11,12 and into Eq. (B.2) 1 and use the solution (24) to get 

( i r�rr ) 
′ = 

i 

r 
[ κ11 U r + i κ12 U θ + i κ13 U z + i (
111 − 
221 ) ( i r�r ) − i ( i r�rr ) 

+ ( xa 3 + yb 3 ) ( i r�rθ ) + ( xa 4 + yb 4 ) ( i r�rz ) 

+ 

(
xa 5 + yb 5 − 
122 n 

2 

K 22 

− 
133 k 
2 r 2 

K 33 

)
�

]
, (B.9)

where 

x = ( γ12 − τrr ) n + krA 1231 , y = ( γ13 − τrr ) kr + n A 1321 , 

κ11 = 2(γ12 − τrr + β12 ) + γ21 n 

2 + γ31 k 
2 r 2 + 2 A 3121 nkr + xa 1 + yb 1 , 

κ12 = n [ 2 β12 + 2(γ12 − τrr ) + γ21 ] − kr(A 1123 − A 2232 − A 2131 ) + xa 2 + yb 2 , 

κ13 = kr ( A 01111 + A 02233 − A 01122 − A 01133 + p ) − n (A 1123 − A 2223 ) , 

γ21 = A 2121 −

2 

122 

K 22 

, γ31 = A 3131 −

2 

133 

K 33 

, 

β12 = 

1 

2 

(
A 1111 + A 2222 − 2 A 1122 − 2 A 1221 + 

2
2 
122 

K 22 

)
. (B.10)

Similarly, the remaining equilibrium Eqs. (B.2) 2,3 can be rearranged to get 

( i r�rθ ) ′ = 

i 

r 
{ −i κ12 U r + κ22 U θ + κ23 U z − n ( i r�rr ) − i [ (γ12 − τrr ) a 3 + A 2113 b 3 ] ( i r�rθ ) 

−i [ (γ12 − τrr ) a 4 + A 2113 b 4 ] ( i r�rz ) − n (
221 − 
111 )( i r�r ) 

−i 

[
(γ12 − τrr ) a 5 + A 1321 b 5 + 


122 n 

K 22 

]
�

}
, 

( i r�rz ) 
′ = 

i 

r 
[ −i κ13 U r + κ23 U θ + κ33 U z + kr(
111 − 
331 )( i r�r ) − kr( i r�rr ) ] , (B.11)

where 

κ22 = 2 n 

2 (γ12 − τrr + β12 ) + γ21 + k 2 r 2 A 3232 

+ 2 nkr(A 2232 − A 1123 ) + (γ12 − τrr ) a 2 + A 1321 b 2 , 

κ23 = nkr ( A 1111 + A 2233 + A 2332 − A 1122 − A 1133 + 2 p ) − k 2 r 2 (A 1132 − A 3233 ) 

− n 

2 (A 1123 − A 2223 ) , 

κ33 = k 2 r 2 ( A 1111 − 2 A 1133 + A 3333 + 2 p ) + n 

2 A 2323 − 2 nkr(A 1123 − A 2223 ) . (B.12)

Finally, from Eqs. (B.1) 10 , (24) and (B.5) , we have 

�′ = 

i 

r 
[ −i (
0111 − 
0221 ) U r + n (
0111 − 
0221 ) U θ (
0111 − 
0331 ) U z + K 011 ( i r�r ) ] . (B.13)

Now we can write Eqs. (B.5) , (B.6), (B.8), (B.9), (B.11) and (B.13) in the form presented in Eq. (27) , with the non-zero

components of G 

a , G 

b and G 

c have the forms 

G 

a 
11 = i , G 

a 
12 = −n, G 

a 
13 = −kr, G 

a 
21 = a 1 , G 

a 
22 = i a 2 , 

G 

a 
31 = b 1 , G 

a 
32 = i b 2 , G 

a 
41 = −

[
n 
122 

K 22 
( n + a 1 ) + 

kr
133 

K 33 
( kr + b 1 ) 

]
, 

G 

a 
42 = −i 

[
n 
122 

K 22 
( 1 + a 2 ) + 

kr
133 b 2 
K 33 

]
, 

G 

b 
22 = a 3 , G 

b 
23 = G 

b 
32 = a 4 , G 

b 
24 = b 5 , G 

b 
33 = b 4 , G 

b 
34 = G 

b 
43 = b 5 , 

G 

b 
44 = −

(
n 

2 

K 22 

+ 

k 2 r 2 

K 33 

+ 


122 n 

K 22 

a 5 + 


133 kr 

K 33 

b 5 

)
, 
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G 

c 
11 = κ11 , G 

c 
12 = −G 

c 
21 = i κ12 , G 

c 
13 = −G 

c 
31 = i κ13 , 

G 

c 
14 = −G 

c 
41 = i (
111 − 
221 ) , G 

c 
22 = κ22 , G 

c 
23 = G 

c 
32 = κ23 , 

G 

c 
24 = G 

c 
42 = n (
111 − 
221 ) , G 

c 
34 = G 

c 
43 = kr(
111 − 
331 ) , G 

c 
44 = K 11 . (B.14) 
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