
International Journal of Non-Linear Mechanics 127 (2020) 103593

B
t
W
a

b

c

A

K
F
L
S
N

1

r
b
u
‘
t
a
o
c
w

m
c
A
i
f
a

m
a

a

h
R
A
0

Contents lists available at ScienceDirect

International Journal of Non-Linear Mechanics

journal homepage: www.elsevier.com/locate/nlm

ifurcation of a finitely deformed functionally graded dielectric elastomeric
ube
eijian Zhou a, Yingjie Chen b, Yipin Su b,c,1,∗

Department of Architecture and Civil Engineering, City university of Hong Kong, Hong Kong
Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland

R T I C L E I N F O

eywords:
unctionally graded dielectric tube
inearized buckling
urface impedance matrix method
eo-Hookean material

A B S T R A C T

Soft functionally graded materials have attracted intensive attention owing to their special material inho-
mogeneity and are realized as various applications. In this paper, we theoretically investigate the finite
deformation and superimposed bifurcation behaviors of an incompressible functionally graded dielectric
tube subject to a combination of axial stretch and radial voltage. The theoretical framework of nonlinear
electroelasticity and the related linearized incremental version is employed. We assume that the modulus
and permittivity of the elastomer vary linearly along the thickness of the tube. The surface impedance matrix
method is adopted to obtain the bifurcation equation for buckling of the tube. We present numerical calculation
for the ideal neo-Hookean dielectric elastomer to study the effects of the applied voltage, geometrical size and
material grading parameters on the nonlinear response and the incremental buckling behavior of the tube.
We validate our results through comparison with those of the elastic problem. The results can provide solid
guidance for the design and realization of dielectric actuators.
. Introduction

Soft robotic actuators present many advantages compared with their
igid counterparts, including good sensitivity, high toughness, wide
iocompatibility and softness, etc. [1]. However, soft actuators are
nable to apply highly localized point loads. Recently, the so-called

hybrid robots’ composed of rigid and flexible components are proposed
o overcome this limitation [2]. This kind of robots can grasp, puncture
nd anchor into solid components such as controller, chip and battery,
wing to their rigid ends. On the other hand, these actuators are also
ompliant and resilient due to the soft parts, thus can be integrated
ith flexible and highly extensible devices [2,3].

One possible strategy for designing ‘hybrid actuators’ is to use
ultilayers composed of rigid and soft elastomers [2]. However, the

ircumferential stresses of the layers are discontinuous at the interface.
s a result, interfacial slide, exfoliation and crack formation can be

nduced during the deformation. To overcome this potential problem,
unctionally graded flexible actuators have been developed for soft robotic
pplications [3,4].

Dielectric elastomers (DEs), as one class of highly deformable smart
aterials, have attracted considerable attention from both scientific

nd industrial community [5–9], attributing to their rapid and large de-
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1 Accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated
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formation in response to external electric stimuli, reversible response,
light weight, low cost, high reliability, etc. Their applications include
actuators, transducers, biomechanical devices, tunable metamaterials,
micro-pumps, as well as soft robots, artificial muscles, sensitive skins,
and so on [10–14].

The DEs can be fabricated by embedding fine electroactive particles
into rubber-like matrix [15]. Another simple way to produce DEs is
to attach flexible electrodes onto the surfaces of a soft plate, tube or
spherical shell [16]. Subject to an electrical voltage, the Coulomb force
will be generated between the two electrodes with opposite charges
so as to cause reduction in thickness and expansion in area of the
actuator. Reports show that the voltage-induced strains in DEs can be
over 100% [17].

Traditionally, functionally graded materials (FGMs) can be manu-
factured through well-established industrial processes, such as Plasma
Spraying, Self-propagating High-temperature Synthesis (SHS), Powder
Metallurgy Technique and Centrifugal Casting Method, etc. [18]. These
methods can be extended for fabrication of functionally graded di-
electric elastomers (FGDEs). For example, spatial inhomogeneities in
chemical or mechanical properties can be introduced to rubber-like
materials from the non-uniform temperature [19], and inhomogeneous
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dielectric property can be realized by unevenly embedding electroac-
tive particles into the FGM polymeric matrix through the multimaterial
3D printing technique [20].

Instabilities may occur in DEs when the applied voltage reaches a
critical value, including electric breakdown, electromechanical instabil-
ity (or pull-in instability) and bifurcation. Traditionally, the instabilities
have been viewed as a main factor that causes the failure of the
structure thus should be avoided in engineering. However, approaches
have been proposed recently to design high-performance devices by
utilizing instabilities of DE structures. For example, Wu et al. [13]
utilized the instability-induced large deformation in DE phononic rod
system to suddenly and widely tune the band gaps. Chen et al. [21]
designed a periodic DE laminate with tunable band gaps utilizing the
snap-through instability of the elastomer. Pang et al. [22] recently
developed strategies to utilize buckling phenomenon in DEs for the
electro-mechanically controlled 3D assembly.

The research of the large deformation in DEs is very challenging,
mainly due to the multi-physical couplings and the strong nonlinearity.
The theoretical framework of the nonlinear electroelasticity was first
proposed in 1950s by Toupin [23]. Then, the theory was extended
to include the thermal and magnetic coupling effects by Landau and
Lifshitz [24], Tiersten [25], and Maugin [26], etc. Later, the linearized
incremental theory is developed [27,28] for dealing with the small-on-
large problems, e.g. the infinitesimal waves [29,30], vibration [31] and
linearized buckling [32,33] in finitely deformed DE structures.

In the middle 1980s, a Japanese research group first proposed
the concept of the FGMs, a new class of inhomogeneous materials
with physical properties continuously varying along one or more di-
rections [34]. Compared with layered structures [35], the continuous
variation of the material properties enables the FGMs to eliminate the
sharp stress discontinuity, avoid the high stress concentration, reduce
the residual stress, increase the bonding strength, and at the same time
remain the natural properties of each material constituent in them.
The FGMs have been a hot research topic for decades, and a massive
of works have been reported [36–39]. However, most of the existing
researches on FGMs only deal with their linear mechanical responses
or weak geometrical nonlinearity, but few of them [40,41] concern
soft FGM structures with strong geometrical and material nonlinearity.
In the present paper, we will concentrate on the analysis of nonlinear
response and linearized buckling in FGDEs. Our purpose is to use the
material gradient to optimize the nonlinear response and instability
behavior of FGDE tubes.

We first derive the governing equations of large deformation in an
FGDE tube subject to a radial voltage and an axial strain in Section 2.
The shear modulus and permittivity of the elastomer are assumed to be
graded along the thickness according to linear laws. Then in Section 3,
we employ Dorfman and Ogden’s incremental theory [28] to establish
the bifurcation equations to predict and simulate the linearized buck-
ling of the tube. The surface impedance matrix method is employed
to obtain and solve the bifurcation equation. We present numerical
results in Section 4 for ideal neo-Hookean DE material to discuss the
influences of applied voltage, structural geometry and material gradient
parameters on the finite response and incremental buckling behavior
of the FGDE tube. We find that the application of voltage can help
stabilize the FGDE tube, and the stabilization can be further enhanced
by increasing the grading degree of permittivity and/or decreasing
the grading degree of shear modulus. In addition, it can be seen that
the influence of the permittivity gradient parameter on the buckling
behavior of the tube is more notable than that of the modulus gradient
parameter.

2. Finite deformation of an FGDE tube

2.1. Static motion

In this paper, we consider isotropic incompressible dielectric elas-
tomers. Using the referential cylindrical system (𝑅,𝛩,𝑍), the FGDE
2

tube originally occupies the region

𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑜, 0 ≤ 𝛩 ≤ 2𝜋, 0 ≤ 𝑍 ≤ 𝐿, (2.1)

as illustrated in Fig. 1(a), where 𝑅𝑖 and 𝑅𝑜 are the inner and outer
radii of the tube, respectively, 𝐿 is the initial length. 𝑅𝑜 = 𝑅𝑜∕𝑅𝑖 is the
dimensionless initial radius ratio and 𝐻 = 𝑅𝑜 − 𝑅𝑖 is the undeformed
thickness of the tube. Throughout the paper, the physical parameters at
the inner and outer faces of the tube are indicated with the subscripts
‘𝑖’ and ‘𝑜’, respectively.

Consider an FGDE tube with lateral ends attached with two paral-
leled rigid glossy plates. Subject to a voltage 𝑉 across the thickness
and a mechanical load along the length, the tube deforms finitely into
the current region

𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑜, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑧 ≤ 𝑙, (2.2)

as illustrated in Fig. 1(b), through the following deformation [42,43]

𝑅2 − 𝑅2
𝑖 = 𝜆𝑧(𝑟2 − 𝑟2𝑖 ), 𝜃 = 𝛩, 𝑧 = 𝜆𝑧𝑍, (2.3)

where 𝜆𝑧 is the uniform axial stretch of the tube. We adopt the
notation 𝑟𝑜 = 𝑟𝑜∕𝑟𝑖 to denote the deformed radius ratio of the tube,
with 𝑟𝑖 and 𝑟𝑜 being the inner and outer radii of the deformed tube,
respectively. 𝑙 = 𝜆𝑧𝐿 and ℎ = 𝑟𝑜 − 𝑟𝑖 are the length and thickness of the
deformed tube, respectively. Here we focus on an incompressible FGDE
tube maintaining its tubular shape when undergoing a combination of
inflation and extension.

Then the deformation gradient 𝑭 can be obtained from Eq. (2.3) as

𝑭 = 𝜕𝒙
𝜕𝑿

=
⎡

⎢

⎢

⎣

𝜆−1𝜆−1𝑧 0 0
0 𝜆 0
0 0 𝜆𝑧

⎤

⎥

⎥

⎦

, (2.4)

where 𝒙 and 𝑿 are the position vectors of the material in the refer-
ence and deformed configurations, respectively, and 𝜆 = 𝑟∕𝑅 is the
circumferential stretch, which from Eq. (2.3) reads

𝜆 = 1
𝑅

√

𝑅2 − 𝑅2
𝑖

𝜆𝑧
+ 𝑟2𝑖 . (2.5)

From Eqs. (2.3) and (2.5), we can obtain the relationship between
the circumferential stretches at the inner and outer surfaces 𝜆𝑖 = 𝑟𝑖∕𝑅𝑖
and 𝜆𝑜 = 𝑟𝑜∕𝑅𝑜 and the axial stretch 𝜆𝑧 of the deformed tube as

𝜆𝑜 =
1
𝑅𝑜

√

1
𝜆𝑧

(

𝑅
2
𝑜 + 𝜆𝑧𝜆2𝑖 − 1

)

, (2.6)

and establish the following connections
d𝑟
d𝜆 = 𝑟

𝜆
(

1 − 𝜆𝑧𝜆2
) , 𝑅d𝑅 = 𝜆𝑧𝑟d𝑟. (2.7)

2.2. Electric and stress fields

The electric field in the solid is generated by applying a voltage
through the flexible electrodes coated on the inner and outer faces
of the dielectric tube. According to the Gauss’s theorem, there is no
exterior electric field and thus no Maxwell stress outside the tube [44].

On the basis of the nonlinear electroelasticity [32,45], the total
Cauchy stress 𝝉 and true electric field 𝑬 in a deformed incompressible
dielectric elastomer can be obtained as

𝝉 = 2𝛺1𝒃 + 2𝛺2
(

𝐼1𝒃 − 𝒃2
)

− 𝑝𝑰 + 2𝛺5𝑫 ⊗𝑫

+ 2𝛺6 (𝑫 ⊗ 𝒃𝑫 + 𝒃𝑫 ⊗𝑫) , (2.8)

𝑬 = 2
(

𝛺4𝒃−1𝑫 +𝛺5𝑫 +𝛺6𝒃𝑫
)

, (2.9)

where 𝑫 is the true electric displacement, 𝑰 is identity tensor, 𝒃 =
𝑭𝑭 T is the left Cauchy–Green deformation tensor, and 𝑝 is a Lagrange
multiplier associated with the incompressibility constraint of the solid,
which can be determined from the boundary conditions. Here the
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Fig. 1. Sketch of the in-plane cross section of an FGDE tube in the (a) undeformed and (b) deformed configurations.
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shorthand notation 𝛺𝑚 = 𝜕𝛺∕𝜕𝐼𝑚 (𝑚 = 1, 2, 4, 5, 6) is adopted, with
(𝐼1, 𝐼2, 𝐼4, 𝐼5, 𝐼6) being the augmented free energy function of the

lastomer, which can be expressed in terms of the following five
nvariants

1 = tr𝒄, 𝐼2 = tr
(

𝒄−1
)

, 𝐼4 = 𝑫𝑙 ⋅𝑫𝑙 ,

5 = 𝑫𝑙 ⋅ 𝒄𝑫𝑙 , 𝐼6 = 𝑫𝑙 ⋅ 𝒄2𝑫𝑙 , (2.10)

here 𝒄 = 𝑭 T𝑭 is the right Cauchy–Green deformation tensor and
𝑙 = 𝑭 −1𝑫 is the nominal electric displacement.

For the considered problem, the nominal electric field and electric
isplacement have the forms

𝑙 =
[

𝐸𝑅 0 0
]T , 𝑫𝑙 =

[

𝐷𝑅 0 0
]T , (2.11)

here 𝐸𝑅 and 𝐷𝑅 are the only non-zero components of the nomi-
al electric field and electric displacement along the radial direction,
espectively.

Then the true electric field and electric displacement can be ob-
ained as

= 𝑭 −𝑇𝑬𝑙 =
[

𝐸𝑟 0 0
]T , 𝑫 = 𝑭𝑫𝑙 =

[

𝐷𝑟 0 0
]T , (2.12)

where 𝐸𝑟 = 𝜆𝜆𝑧𝐸𝑅 and 𝐷𝑟 = 𝜆−1𝜆−1𝑧 𝐷𝑅 are the only non-zero
components of the true electric field and electric displacement along
the radial direction, respectively.

The non-zero components of the total Cauchy stress 𝝉 and of the
electric field 𝑬 can be derived from Eqs. (2.4) and (2.8)–(2.12) as

𝜏𝑟𝑟 = 2𝜆−2𝜆−2𝑧 𝛺1 + 2
(

𝜆−2 + 𝜆−2𝑧
)

𝛺2 + 2𝜆−2𝜆−2𝑧 𝐷2
𝑅𝛺5 + 4𝜆−4𝜆−4𝑧 𝐷2

𝑅𝛺6 − 𝑝,

𝜏𝜃𝜃 = 2𝜆2𝛺1 + 2
(

𝜆−2𝑧 + 𝜆2𝜆2𝑧
)

𝛺2 − 𝑝,

𝜏𝑧𝑧 = 2𝜆2𝑧𝛺1 + 2
(

𝜆−2 + 𝜆2𝜆2𝑧
)

𝛺2 − 𝑝, (2.13)

𝐸𝑟 = 2
(

𝜆𝜆𝑧𝛺4 + 𝜆−1𝜆−1𝑧 𝛺5 + 𝜆−3𝜆−3𝑧 𝛺6
)

𝐷𝑅. (2.14)

Introducing a reduced energy function 𝑊 defined by

𝑊
(

𝜆, 𝜆𝑧, 𝐷𝑅
)

= 𝛺
(

𝐼1, 𝐼2, 𝐼4, 𝐼5, 𝐼6
)

, (2.15)

Eqs. (2.13) and (2.14) yield the following relationships:

𝜏𝑟𝑟 − 𝜏𝜃𝜃 = −𝜆𝜕𝑊
𝜕𝜆

, 𝜏𝑟𝑟 − 𝜏𝑧𝑧 = −𝜆𝑧
𝜕𝑊
𝜕𝜆𝑧

, (2.16)

𝐸𝑅 = 𝜆−1𝜆−1𝑧 𝐸𝑟 =
𝜕𝑊
𝜕𝐷𝑅

. (2.17)

Specifically, we consider 𝑖𝑑𝑒𝑎𝑙 𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑒𝑙𝑎𝑠𝑡𝑜𝑚𝑒𝑟𝑠 with the energy
unction [46,47]

(𝜆, 𝜆𝑧, 𝐷𝑅) = 𝑊 𝐸 (𝜆, 𝜆𝑧) +
𝐷2

𝑅

2𝜀𝜆2𝜆2𝑧
. (2.18)

Here the first term 𝑊 𝐸 on the righthand is the elastic energy of the
elastomer which generally contains the shear modulus 𝜇, and the
3

second term containing the permittivity 𝜀 accounts for the interaction
etween the finite deformation and the electric displacement field. The
hear modulus 𝜇 and the permittivity 𝜀 of the elastomer are taken to
e graded in the thickness direction according to the following linear
aws [40,41]

(𝑅) = 𝜇0
(

1 + 𝛽𝜇𝑅
)

, 𝜀(𝑅) = 𝜀0
(

1 − 𝛽𝜀𝑅
)

, (2.19)

where

𝑅(𝜆) = 𝑅∕𝑅𝑖 =

√

1 − 𝜆𝑧𝜆2𝑖
1 − 𝜆𝑧𝜆2

, (2.20)

𝜇0 and 𝜀0 are material constants, 𝛽𝜇 and 𝛽𝜀 are two dimensionless
parameters characterizing the functionally graded properties of the
elastomer, respectively.

For ideal dielectric elastomers, from Eqs. (2.17) and (2.18) and the
relationship 𝐸𝑟 = 𝜆𝜆𝑧𝐸𝑅 we have [32,48]

𝐷𝑟 = 𝜀𝐸𝑟. (2.21)

Note that the true electric displacement component 𝐷𝑟 satisfies the
relationship [32]

𝑟𝐷𝑟 ≡ constant, (2.22)

which follows from the Maxwell equation

div𝑫 = 1
𝑟
𝜕(𝑟𝐷𝑟)
𝜕𝑟

= 0. (2.23)

The electric potential difference between the inner and outer sur-
faces of the tube is

𝑉 = ∫

𝑟𝑜

𝑟𝑖
𝐸𝑟 d𝑟. (2.24)

From Eqs. (2.19)–(2.24), we can express the electric displacement
as

𝐷𝑅 =
𝑉 𝜆𝑧

(

𝑅𝑜 − 1
)

𝑓 (𝜆𝑜)

√

1 − 𝜆𝑧𝜆2

1 − 𝜆𝑧𝜆2𝑖
, (2.25)

where

𝑓 (𝜆) = ∫

𝜆

𝜆𝑖

1
1 − 𝛽𝜀𝑅

d𝜆
𝜆
(

1 − 𝜆𝑧𝜆2
) , (2.26)

and

𝐷𝑅 =
𝐷𝑅

√

𝜀0𝜇0
, 𝑉 = 𝑉

𝑅𝑜 − 𝑅𝑖

√

𝜇0

𝜀0
(2.27)

are non-dimensional measurements of 𝐷 and 𝑉 , respectively.
𝑅



W. Zhou, Y. Chen and Y. Su International Journal of Non-Linear Mechanics 127 (2020) 103593

(

𝜏

a

𝜏

(

ℎ

t

w
[

𝑺
w

t
t

w

𝒛

w
H
a
t

𝑺

4

4

n

𝑊

w

𝑓

According to the nonlinear electroelasticity, the equilibrium equa-
tions of the tube reduce to [32,45]
𝜕𝜏𝑟𝑟
𝜕𝑟

+ 1
𝑟
(

𝜏𝑟𝑟 − 𝜏𝜃𝜃
)

= 0, (2.28)

where 𝜏𝑖𝑖 (𝑖 = 𝑟, 𝜃, 𝑧) are the non-zero components of the total Cauchy
stress.

The radial stress 𝜏𝑟𝑟 can be obtained from Eqs. (2.7), (2.16)1 and
2.28) as

𝑟𝑟 = ∫

𝜆

𝜆𝑖

𝜕𝑊
𝜕𝜆

1
1 − 𝜆𝑧𝜆2

d𝜆 + 𝜏𝑟𝑟(𝑟𝑖). (2.29)

For the considered problem, the inner and outer faces of the tube
re taken to be traction-free, i.e.

𝑟𝑟(𝑟𝑖) = 𝜏𝑟𝑟(𝑟𝑜) = 0. (2.30)

Combining Eqs. (2.18), (2.25), (2.29) and the boundary condition
2.30), the voltage 𝑉 can be expressed as

𝑉 =
|𝑓 (𝜆𝑜)|

𝜆𝑧
(

𝑅𝑜 − 1
)

√

(

𝜆𝑧𝜆2𝑖 − 1
)

ℎ(𝜆𝑜)
𝑔(𝜆𝑜)

(2.31)

where

𝑔(𝜆) =
[

2𝜀(𝜆)𝜆2𝜆2𝑧
]−1 −

[

2𝜀(𝜆𝑖)𝜆2𝑖 𝜆
2
𝑧
]−1 ,

(𝜆) = ∫

𝜆

𝜆𝑖

𝜕𝑊
𝐸
(𝜆, 𝜆𝑧)
𝜕𝜆

d𝜆
1 − 𝜆𝑧𝜆2

. (2.32)

with

𝜀 = 𝜀
𝜀0

, 𝑊
𝐸
= 𝑊 𝐸

𝜇0
(2.33)

being the non-dimensional measurements of 𝜀 and 𝑊 𝐸 , respectively.
Finally, the inner and outer circumferential stretches 𝜆𝑖 and 𝜆𝑜 of the

FGDE tube can be determined by solving Eqs. (2.6) and (2.31), once the
axial stretch 𝜆𝑧 and applied voltage 𝑉 are given.

From Eqs. (2.29) and (2.31), the dimensionless radial stress is

𝜏𝑟𝑟(𝜆) =
𝜏𝑟𝑟
𝜇0

= ℎ(𝜆) + 1
1 − 𝜆𝑧𝜆2𝑖

⎡

⎢

⎢

⎢

⎣

𝑉 𝜆𝑧
(

𝑅𝑜 − 1
)

𝑓 (𝜆𝑜)

⎤

⎥

⎥

⎥

⎦

2

𝑔(𝜆). (2.34)

Then the full stress distribution in the deformed tube can be deter-
mined from Eqs. (2.16) and (2.34).

The axial mechanical load applied at the end of the tube is [43,49]

𝐹 = 2𝜋 ∫

𝑟𝑜

𝑟𝑖
𝜏𝑧𝑧𝑟d𝑟 = 𝜋 ∫

𝑟𝑜

𝑟𝑖

(

2𝜆𝑧
𝜕𝑊
𝜕𝜆𝑧

− 𝜆𝜕𝑊
𝜕𝜆

)

𝑟d𝑟. (2.35)

3. Bifurcation analysis

Upon the finitely deformed configuration, we superimpose a small
3D harmonic inhomogeneous incremental deformation 𝒖 = 𝒖(𝒙) along
with an incremental electric displacement �̇�, with components in the
form [32,50]

𝑢𝑟 = 𝑈𝑟(𝑟)cos (𝑛𝜃) cos (𝑘𝑧) , 𝑢𝜃 = 𝑈𝜃(𝑟)sin (𝑛𝜃) cos (𝑘𝑧) ,
𝑢𝑧 = 𝑈𝑧(𝑟)cos (𝑛𝜃) sin (𝑘𝑧) , �̇� = 𝛷(𝑟)cos (𝑛𝜃) cos (𝑘𝑧) ,
�̇�𝑟𝑟 = 𝛴𝑟𝑟(𝑟)cos (𝑛𝜃) cos (𝑘𝑧) , �̇�𝑟𝜃 = 𝛴𝑟𝜃(𝑟)sin (𝑛𝜃) cos (𝑘𝑧) ,

�̇�𝑟𝑧 = 𝛴𝑟𝑧(𝑟)cos (𝑛𝜃) sin (𝑘𝑧) , �̇�𝑟 = 𝛥𝑟(𝑟)cos (𝑛𝜃) cos (𝑘𝑧) , (3.1)

where 𝑢𝑟, 𝑢𝜃 , 𝑢𝑧 and �̇�𝑟𝑟, �̇�𝑟𝜃 , �̇�𝑧𝑧 are components of 𝒖 and the push-
forward form of incremental nominal stress �̇� , respectively, and �̇�𝑟
is component of the push-forward form of incremental electric dis-
placement in the 𝑟-direction. The incremental electric potential �̇� is
introduced such that the incremental electric field can be expressed as
�̇� = −grad�̇�. 𝑈𝑟, 𝑈𝜃 , 𝑈𝑧, 𝛷,𝛴𝑟𝑟, 𝛴𝑟𝜃 , 𝛴𝑟𝑧 and 𝛥𝑟 are scalar functions of 𝑟
only, 𝑛 is the circumferential wavenumber, and 𝑘 is the axial wavenumber.
4

Hereinafter, incremental quantities are identified by a superimposed
dot.

We assume that the tube is subject to an end thrust at the faces
𝑧 = 0, 𝑙, while the two surfaces 𝑟 = 𝑟𝑖, 𝑟𝑜 remain traction-free and
the applied voltage is taken to be a constant. Then the incremental
boundary conditions for the incremental fields are

𝑢𝑧 = �̇�0𝑧𝑟 = �̇�0𝑧𝜃 = 0 at 𝑧 = 0, 𝜆𝑧𝐿,

�̇�0𝑟𝑟 = �̇�0𝑟𝜃 = �̇�0𝑟𝑧 = �̇� = 0 at 𝑟 = 𝑟𝑖, 𝑟𝑜. (3.2)

Combining Eqs. (3.1) and (3.2)1 yields the relationship between the
wavenumber 𝑘 and the length of the tube 𝐿 as

𝑘 = 𝑚𝜋
𝜆𝑧𝐿

(𝑚 = 0, 1, 2,…). (3.3)

The governing equations of the incremental motion can be recast in
he form of the following first-order differential system [32]
d
d𝑟𝜼(𝑟) =

1
𝑟
𝑮𝜼(𝑟), (3.4)

here 𝜼(𝑟) =
[

𝑈𝑟 𝑈𝜃 𝑈𝑧 𝑟𝛥𝑟 𝑟𝛴𝑟𝑟 𝑟𝛴𝑟𝜃 𝑟𝛴𝑟𝑧 𝛷
]T =

𝑼 𝑺
]T is the Stroh vector (with 𝑼 =

[

𝑈𝑟 𝑈𝜃 𝑈𝑧 𝑟𝛥𝑟
]T and

=
[

𝑟𝛴𝑟𝑟 𝑟𝛴𝑟𝜃 𝑟𝛴𝑟𝑧 𝛷
]T), and 𝑮 is the so-called Stroh matrix,

ith its components given in Appendix A.
According to the standard surface impedance matrix method [32,51],

he bifurcation relation of the buckled tube can be obtained by solving
he so-called Riccati differential equation

d𝒛𝑖
d𝑟 = 1

𝑟
(

−𝒛𝑖𝑮1 − 𝒛𝑖𝑮2𝒛𝑖 +𝑮3 +𝑮4𝒛𝑖
)

, (3.5)

ith the initial and stop conditions
𝑖(𝑟𝑖, 𝑟𝑖) = 𝟎, det 𝒛𝑖(𝑟𝑜, 𝑟𝑖) = 0, (3.6)

hich can be derived from the incremental boundary conditions (3.2).
ere the components of the matrices 𝑮1 ∼ 𝑮4 are given in Appendix A,
nd 𝒛𝑖(𝑟, 𝑟𝑖) is the so-called conditional impedance matrix, linking the
raction and the displacement vectors as

(𝑟) = 𝒛𝑖(𝑟, 𝑟𝑖)𝑼 (𝑟). (3.7)

. Numerical results

.1. Material model

The particular form of energy function we consider here is the
eo-Hookean dielectric model given by [47,52]

(𝜆, 𝜆𝑧, 𝐷𝑅) = 𝑊 𝐸 (𝜆, 𝜆𝑧) +
𝐷2

𝑅

2𝜆2𝜆2𝑧𝜀
=

𝜇
2
(𝜆2 + 𝜆−2𝜆−2𝑧 + 𝜆2𝑧 − 3) +

𝐷2
𝑅

2𝜆2𝜆2𝑧𝜀

(4.1)

here 𝜇(𝜆) and 𝜀(𝜆) are the shear modulus and the permittivity of the
elastomer, respectively, given by Eq. (2.19).

Then the functions 𝑓 (𝜆), 𝑔(𝜆) and ℎ(𝜆) can be calculated as [41]

(𝜆) = 𝑎 ln 𝑥 + 𝑅
𝑥 + 1

+ 𝑏

(

tan−1 𝑅
√

𝑦
− tan−1 1

√

𝑦

)

− 𝑎 ln
⎛

⎜

⎜

⎝

𝜆
𝜆𝑖

√

1 − 𝜆𝑧𝜆2𝑖
1 − 𝜆𝑧𝜆2

⎞

⎟

⎟

⎠

,

𝑔(𝜆) = 1
2𝜆2𝑧𝜆

2
𝑖 (𝛽𝜀 − 1)

+ 1

2𝜆2𝑧𝜆2
(

1 − 𝛽𝜀
√

𝜆2𝑖 𝜆
2
𝑧−1

𝜆2𝜆2𝑧−1

) ,

ℎ(𝜆) = − 1
𝜆𝑧

[

ln 𝜆 +
𝐺 (1 + 𝛽𝜇)

2𝑟2
−

3𝛽𝜇
√

𝜆𝑧𝐺
2

tan−1 𝑅
√

𝜆𝑧𝐺

]

+ 1
𝜆𝑧

[

ln 𝜆𝑖 +
𝐺 (1 + 𝛽𝜇)

2𝜆2𝑖
−

3𝛽𝜇
√

𝜆𝑧𝐺
2

tan−1 𝑅
√

𝜆𝑧𝐺

]

, (4.2)
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Fig. 2. Effects of (a) modulus gradient parameter 𝛽𝜇 and (b) permittivity gradient parameter 𝛽𝜀 on the nonlinear response of an FGDE tube with 𝑅𝑜 = 2 subject to a voltage
𝑉 = 0.3.
Fig. 3. Plots of 𝐸𝑟 versus 𝑟 of an FGDE tube with 𝑅𝑜 = 2 and varying (a) modulus gradient parameter 𝛽𝜇 and (b) permittivity gradient parameter 𝛽𝜀 subject to a voltage 𝑉 = 0.3
nd an axial stretch 𝜆𝑧 = 1.
w
here

= − 1
𝛽𝜀

𝑦 = 𝜆𝑧𝜆
2
𝑖 − 1,

𝑎 = 1
(𝛽𝜀)2

(

1 − 𝜆2𝑖 𝜆𝑧
)

− 1
, 𝑏 =

𝛽𝜀
(

1 − 𝜆2𝑖 𝜆𝑧
)

√

𝜆2𝑖 𝜆𝑧 − 1
[

(𝛽𝜀)2
(

1 − 𝜆2𝑖 𝜆𝑧
)

− 1
]

,

= 𝜆2𝑖 − 𝜆−1𝑧 , 𝑟 = 𝑟
𝑅𝑖

= 𝜆

√

1 − 𝜆𝑧𝜆2𝑖
1 − 𝜆𝑧𝜆2

. (4.3)

The components of the electroelastic moduli tensors for the ideal
eo-Hookean dielectrics can be obtained by substituting Eq. (4.1) into
ppendix B as

1111 = 1212 =
𝐷2

𝑟
𝜀

+
𝜇

𝜆2𝜆2𝑧
, 1122 = 1221 = 0,

2222 = 2121 = 𝜇𝜆2,

𝛤122 =
𝐷𝑟
𝜀
, 𝐾22 =

1
𝜀
. (4.4)

Note that the material parameters 𝜇 and 𝜀 in Eq. (4.4) are functions of
the stretch 𝜆.

.2. Nonlinear response

Fig. 2 presents the nonlinear response of an FGDE tube with the
adius ratio 𝑅𝑜 = 2 for different material gradient parameters 𝛽𝜇 and
𝜀, subject to a fixed electric voltage 𝑉 = 0.3. The inner circumferential
tretch 𝜆𝑖 decreases as the axial stretch 𝜆𝑧 increases, which is indepen-
ent of 𝛽𝜇 and 𝛽𝜀. Particularly, for tubes with a larger value of 𝛽𝜇 or a

smaller value of 𝛽𝜀, an identical axial stretch 𝜆𝑧 will result in a smaller
circumferential stretch 𝜆𝑖. It can be seen that the effects of 𝛽𝜇 and 𝛽𝜀

on the finite deformation of the tube can be ignored for large value of
𝜆𝑖.

Fig. 3 displays the effects of the material gradient parameters 𝛽𝜇

nd 𝛽𝜀 on the distribution of the dimensionless true electric field 𝐸𝑟 =
𝐸

√

𝜀0∕𝜇0 through the thickness 𝑟 = (𝑟 − 𝑟 )∕(𝑟 − 𝑟 ) of an FGDE tube
𝑟 𝑖 𝑜 𝑖

5

ith 𝑅𝑜 = 2 subject to a radial voltage 𝑉 = 0.3 and an axial stretch
𝜆𝑧 = 1. It can be seen that for a homogeneous tube with 𝛽𝜇 = 𝛽𝜀 = 0,
the true electric field 𝐸𝑟𝑖 at the face 𝑟𝑖 is always higher than the true
electric field 𝐸𝑟𝑜 at the face 𝑟𝑜, which, in fact, can be obtained from
Eqs. (2.21) and (2.22). It means that electric breakdown [53,54] may
occur first at the inner face of the tube once 𝐸𝑟𝑖 reaches the dielectric
strength of the elastomer. Fig. 3𝑎 shows that increasing 𝛽𝜇 can slightly
decrease the true electric field in the tube, but the maximum electric
field still occur at the inner face of the tube. Particularly, the increase
of 𝛽𝜀 can decrease the electric field at the inner face and increase that
at the outer face of the tube (Fig. 3𝑏). Keeping increasing 𝛽𝜀 will finally
make the electric field at the outer face of the tube higher than that at
the inner face. This provides guidance for the design of DE actuators
where the active devices are placed on the inner part.

4.3. Bifurcation instability

We first validate our calculation by recovering the purely elastic
problem which has been previously investigated [55]. Fig. 4 presents
the bifurcation curves of an elastic tube (𝑉 = 0) with 𝑅𝑜 = 2 for
different circumferential mode numbers 𝑛 = 0−3. A series of bifurcation
branches can be solved from the bifurcation equation (3.5) by taking
𝑛 = 0, 1, 2, 3. Multiple instability modes occur for a given wavenumber
𝑘 = 𝑘(𝑅𝑜 − 𝑅𝑖), when the axial stretch 𝜆𝑧 reaches different critical
values. However only the largest value corresponding to the onset of
the instability is meaningful, as highlighted by the thicker stroke. It can
be seen that the Euler buckling mode 𝑛 = 1 occurs first for a slender
tube with small 𝑘 while the first barreling mode 𝑛 = 0 becomes the
dominant buckling mode for a short tube with large 𝑘. The critical
axial stretch approaches to the asymptotic value 𝜆𝑐 = 0.444 as the
𝑘 increases, corresponding to the surface instability of a compressed
elastic slab [56].

Fig. 5 reports the critical stretch 𝜆𝑐𝑧 as a function of the wavenumber
𝑘 for FGDE tubes with 𝛽𝜇 = 1, 𝛽𝜀 = 0.2, and different radius ratios (a)
𝑅 = 2 and (b) 𝑅 = 1.05 subject to a voltage 𝑉 = 0.5. It can be seen that
𝑜 𝑜
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Fig. 4. Plots of the critical axial stretch 𝜆𝑐𝑧 versus dimensionless wavenumber 𝑘 for a
ange of mode numbers 𝑛 = 0, 1, 2, 3 for an elastic tube with 𝑅𝑜 = 2, 𝛽𝜇 = 𝛽𝜀 = 0 and
𝑉 = 0. The instability of the tube will be triggered when the applied axial stretch 𝜆𝑧
reaches the highest value of the buckling branches, as highlighted by the black solid
curve.

a thin tube with small 𝑅𝑜 is more susceptible to bifurcation instability.
For thick tubes with relatively large 𝑅𝑜, the dominant buckling mode
switches from 𝑛 = 1 to 𝑛 = 0, and the onset value of axial stretch 𝜆𝑐𝑧
for instability decreases monotonously to the asymptotic value as the
wavenumber 𝑘 increases. While for thin tubes with small 𝑅𝑜, the true
uckling curve is non-monotonic. In this case, higher buckling modes
𝑛 ≥ 2) can be induced, depending on the wavenumber 𝑘 [55]. In

Fig. 5𝑏, as the wavenumber 𝑘 increases, the dominant buckling mode
of the tube switches from 𝑛 = 1 to 𝑛 = 2 to 𝑛 = 3 and then back to
= 2 to 𝑛 = 1 until to 𝑛 = 0. It can be expected that for a thinner FGDE

ube (𝑅𝑜 < 1.05), the dominant buckling mode will vary according to
he rule 𝑛 = 1 → 2 → 3 → ... → 𝑁 → ... → 3 → 2 → 1 → 0, where 𝑁 is
he highest buckling mode of the tube, as the wavenumber 𝑘 increases.

That is, a slender tube always buckles in the mode 𝑛 = 1 and a short
and thick tube always buckles in the mode 𝑛 = 0.

In Fig. 6 we examine the effect of the applied voltage 𝑉 on the
bifurcation behavior of a tube with 𝑅𝑜 = 2, 𝛽𝜇 = 1, 𝛽𝜀 = 0.2. Here only
the meaningful true critical axial stretch for bifurcation is presented. It
can be seen that the critical axial stretch 𝜆𝑐𝑧 decreases as the applied
oltage 𝑉 increases. That is, the application of an electric voltage

stabilizes the FGDE tube.
Fig. 7 presents the effect of the gradient parameters 𝛽𝜇 and 𝛽𝜀 on the

𝑐
𝑧−𝑘 plots. Results show that the stability of the tube can be enhanced

by increasing 𝛽𝜀 and/or decreasing 𝛽𝜇 . Moreover, the influence of the
ermittivity gradient parameter 𝛽𝜀 on the buckling behavior of the tube

is more notable than that of the modulus gradient parameter 𝛽𝜇 . Thus
6

Fig. 6. Plots of 𝜆𝑐𝑧 versus 𝑘 for an FGDE tube with 𝑅𝑜 = 2, 𝛽𝜇 = 1, 𝛽𝜀 = 0.2 subject to
voltages 𝑉 = 0.1, 0.5, 1.0.

uning the permittivity gradient parameter 𝛽𝜀 is a proper approach to
nhance the stability of the elastomer.

. Conclusion

In conclusion, we presented a theoretical analysis of the finite defor-
ation and the associated bifurcation behavior of an FGDE tube subject

o a radial voltage and an axial stretch. We derived explicit expressions
f the biasing electric and mechanical fields in the finitely deformed
deal neo-Hookean FGDE tube. The modulus and permittivity of the
lastomer are taken to vary linearly in the direction of the thickness. We
sed the linearized incremental theory to study the incremental motion
uperposed on the finitely deformed configuration and adopted the
tandard robust surface impedance matrix method to solve the resulting
ncremental boundary problem.

We studied the influences of the applied voltage, structural geom-
try and material gradient parameters on the nonlinear response and
ncremental buckling behavior of an FGDE tube. Results show that

long thick tube will buckle in the Euler buckling mode (𝑛 = 1)
hile a short thick tube will buckle in the barreling mode (𝑛 = 0).
owever, higher buckling modes (𝑛 ≥ 2) can be induced for a thin

tube, depending on the wavenumber. We found that the application of
the voltage stabilizes the tube and this stabilization can be enhanced
by increasing 𝛽𝜀 and/or decreasing 𝛽𝜇 .

Recent experimental observation [57] and finite element simula-
ion [58] have been proposed to validate the theoretical prediction of
inearized perturbation analysis of instability of finitely deformed soft
lastic tubes. To the best knowledge of the authors, experimental or
EM study on the effects of the applied voltage and material gradient
roperties on instability of FGDE tubes is still lacking. The current
Fig. 5. Effect of the radius ratio 𝑅𝑜 on the bifurcation behavior of an FGDE tube with 𝛽𝜇 = 1.0 and 𝛽𝜀 = 0.2 subject to an electric voltage 𝑉 = 0.5. Higher buckling mode may
occur in the tube with small 𝑅𝑜.
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Fig. 7. Effects of (a) modulus gradient parameter 𝛽𝜇 and (b) permittivity gradient parameter 𝛽𝜀 on the bifurcation behavior of an FGDE tube with 𝑅𝑜 = 2 subject to a fixed voltage
𝑉 = 0.3.
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work can be expanded in the future by comparing the theoretical,
experimental and numerical results.
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Appendix A. Components of the Stroh matrix

The Stroh matrix 𝑮 in Eq. (3.4) can be simplified as

𝑮 =
[

𝑮1 𝑮2
𝑮3 𝑮4

]

, (A.1)

where the four 4 × 4 sub-blocks 𝑮1,𝑮2,𝑮3 and 𝑮4 have the following
components [32]

𝑮1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −𝑛 −𝑘𝑟 0
𝑛(𝛾12−𝜏𝑟𝑟)

𝛾12

𝛾12−𝜏𝑟𝑟
𝛾12

0 0

𝑘𝑟(𝛾13−𝜏𝑟𝑟)
𝛾13

0 0 0

𝜉1 − 𝑛𝜏𝑟𝑟
𝛾12

𝛤122
𝐾22

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 1
𝛾12

0 − 𝑛
𝛾12

𝛤122
𝐾22

0 0 1
𝛾13

− 𝑘𝑟
𝛾13

𝛤133
𝐾33

0 𝑛
𝛾12

𝛤122
𝐾22

𝑘𝑟
𝛾13

𝛤133
𝐾33

𝜉2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑮3 =

⎡

⎢

⎢

⎢

⎢

⎢

𝜅11 𝜅12 𝜅13 −
(

𝛤111 − 𝛤221
)

𝜅12 𝜅22 𝜅23 −𝑛
(

𝛤111 − 𝛤221
)

𝜅13 𝜅23 𝜅33 −𝑘𝑟
(

𝛤111 − 𝛤331
)

( ) ( )

⎤

⎥

⎥

⎥

⎥

⎥

,

⎣𝛤111 − 𝛤221 𝑛 𝛤111 − 𝛤221 𝑘𝑟 𝛤111 − 𝛤331 −𝐾11 ⎦

7

4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 𝑛(𝛾12−𝜏𝑟𝑟)
𝛾12

− 𝑘𝑟(𝛾13−𝜏𝑟𝑟)
𝛾13

𝜉1

𝑛 − 𝛾12−𝜏𝑟𝑟
𝛾12

0 − 𝑛𝜏𝑟𝑟
𝛾12

𝛤122
𝐾22

𝑘𝑟 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A.2)

here

12 = 1212 −
𝛤 2
122

𝐾22
, 𝛾21 = 2121 −

𝛤 2
122

𝐾22
, 𝛾23 = 2323,

𝛾13 = 1313 −
𝛤 2
133

𝐾33
, 𝛾31 = 3131 −

𝛤 2
133

𝐾33
, 𝛾32 = 3232,

𝜉1 = −
(

𝛤122
𝐾22

𝑛2

𝛾12
+

𝛤133
𝐾33

𝑘2𝑟2

𝛾13

)

𝜏𝑟𝑟,

𝜉2 = −

(

𝑛2

𝐾22
+

𝛤 2
122

𝐾2
22

𝑛2

𝛾12
+ 𝑘2𝑟2

𝐾33
+

𝛤 2
133

𝐾2
33

𝑘2𝑟2

𝛾13

)

,

𝛽12 =
1
2

(

1111 +2222 − 21122 − 21221 +
2𝛤 2

122
𝐾22

)

,

𝛽13 =
1
2

(

1111 +3333 − 21133 − 21331 +
2𝛤 2

133
𝐾33

)

,

𝜅11 = 2(𝛾12 − 𝜏𝑟𝑟 + 𝛽12) + 𝑛2
[

𝛾21 −

(

𝛾12 − 𝜏𝑟𝑟
)2

𝛾12

]

+ 𝑘2𝑟2
[

𝛾31 −

(

𝛾13 − 𝜏𝑟𝑟
)2

𝛾13

]

,

12 = 𝑛

(

𝛾12 + 𝛾21 + 2𝛽12 −
𝜏2𝑟𝑟
𝛾12

)

,

13 = 𝑘𝑟
(

1111 +2233 −1122 −1133 + 𝑝
)

,

22 = 2𝑛2(𝛾12 − 𝜏𝑟𝑟 + 𝛽12) + 𝛾21 −

(

𝛾12 − 𝜏𝑟𝑟
)2

𝛾12
+ 𝑘2𝑟2𝛾32,

𝜅23 = 𝑛𝑘𝑟
(

1111 +2233 +2332 −1122 −1133 + 2𝑝
)

,

𝜅33 = 2𝑘2𝑟2
(

𝛾13 − 𝜏𝑟𝑟 + 𝛽13
)

+ 𝑛2𝛾23. (A.3)

Here 𝑝 is a Lagrange multiplier associated with the incompressibility
constraint of the material, 𝑖𝑗𝑘𝑙 , 𝛤𝑖𝑗𝑘 and 𝐾𝑖𝑗 (𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3) are
components of the fourth-, third- and second-order effective electroe-
lastic moduli tensors , 𝜞 and 𝑲 , which are listed in Appendix B for
reference.

Appendix B. Non-zero electroelastic moduli

For the considered problem, the non-zero components of the instan-
taneous electroelastic moduli read [32,43]

01111 =2𝜆−4𝜆−4𝑧
{

𝜆4
[

2𝛺22 + 𝜆2𝑧
(

𝛺2 + 4𝛺25𝐷
2
𝑟
)

+ 𝜆4𝑧𝐷
2
𝑟
(

𝛺5 + 2𝛺55𝐷
2
𝑟
)]

+2
[

𝛺11 + 𝜆4𝑧𝛺22 + 2𝜆2𝑧
(

𝛺12 + 2𝛺26𝐷
2
𝑟
)

+ 4𝐷2
𝑟
(

𝛺16 +𝛺66𝐷
2
𝑟
)]

+𝜆2𝜆4
(

𝛺 + 4𝛺 𝐷2) + 4𝜆2
(

𝛺 + 2𝛺 𝐷2)

𝑧 2 25 𝑟 12 26 𝑟
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+𝜆2𝜆2𝑧
[

𝛺1 + 4𝛺22 + 8𝛺56𝐷
4
𝑟 +𝐷2

𝑟
(

4𝛺15 + 6𝛺6
)]}

,

01122 =4𝜆−2𝜆−4𝑧
{

𝛺12 + 𝜆2𝑧𝛺22 + 𝜆4𝜆2𝑧
[

𝛺12 + 𝜆2𝑧𝛺22

+ 𝜆2𝑧𝐷
2
𝑟
(

𝛺15 + 𝜆2𝑧𝛺25
)]

+ 2𝛺26𝐷
2
𝑟

+ 𝜆2
[

𝛺22 + 𝜆6𝑧𝛺22 + 𝜆2𝑧𝛺11 + 𝜆2𝑧𝛺2 + 𝜆2𝑧𝐷
2
𝑟
(

2𝛺16 +𝛺25
)

+2𝜆4𝑧
(

𝛺12 +𝛺26𝐷
2
𝑟
)]}

,

01133 =4𝜆−4𝜆−2𝑧
{

𝛺12 + 𝜆2𝛺22 + 𝜆2𝜆4𝑧
[

𝛺12 + 𝜆2𝛺22

+ 𝜆2𝐷2
𝑟
(

𝛺15 + 𝜆2𝛺25
)]

+ 2𝛺26𝐷
2
𝑟

+ 𝜆2𝑧
[

𝛺22 + 𝜆6𝛺22 + 𝜆2𝛺11 + 𝜆2𝛺2 + 𝜆2𝐷2
𝑟
(

2𝛺16 +𝛺25
)

+2𝜆4
(

𝛺12 +𝛺26𝐷
2
𝑟
)]}

,

01212 =2𝜆−2𝜆−2𝑧
{

𝛺1 + 2𝛺6𝐷
2
𝑟 + 𝜆2𝑧

[

𝛺2 + 𝜆2𝐷2
𝑟
(

𝛺5 + 𝜆2𝛺6
)]}

,

01313 =2𝜆−2𝜆−2𝑧
{

𝛺1 + 2𝛺6𝐷
2
𝑟 + 𝜆2

[

𝛺2 + 𝜆2𝑧𝐷
2
𝑟
(

𝛺5 + 𝜆2𝑧𝛺6
)]}

,

01221 = − 2𝜆−2𝑧 𝛺2 + 2𝜆2𝛺6𝐷
2
𝑟 , 01331 = −2𝜆−2𝛺2 + 2𝜆2𝑧𝛺6𝐷

2
𝑟 ,

02121 =2𝜆2
(

𝛺1 + 𝜆2𝑧𝛺2 +𝛺6𝐷
2
𝑟
)

, 03131 = 2𝜆2𝑧
(

𝛺1 + 𝜆2𝛺2 +𝛺6𝐷
2
𝑟
)

,

02222 =2𝜆−4𝑧
[

𝜆2𝑧𝛺2 + 2𝛺22 + 𝜆2
(

𝜆4𝑧𝛺1 + 4𝜆4𝑧𝛺12 + 𝜆6𝑧𝛺2 + 4𝜆4𝑧𝛺22
)

+2𝜆4𝜆4𝑧
(

𝛺11 + 2𝜆2𝑧𝛺12 + 𝜆4𝑧𝛺22
)]

,

02233 =4𝜆−2𝜆−2𝑧
[

𝛺22 + 𝜆4𝜆2𝑧
(

𝜆4𝑧𝛺12 + 𝜆2𝑧𝛺11 + 𝜆2𝑧𝛺2 +𝛺22
)

+𝜆6𝜆4𝑧
(

𝛺12 + 𝜆2𝑧𝛺22
)

+ 𝜆2
(

2𝜆2𝑧𝛺12 + 𝜆4𝑧𝛺22
)]

,

02323 =2𝜆2𝛺1 + 2𝜆−2𝑧 𝛺2, 𝐴02332 = −2𝜆2𝜆2𝑧𝛺2,

𝐴03232 = 2𝜆2𝑧𝛺1 + 𝜆−2𝛺2,

03333 =2𝜆−4
[

𝜆2𝛺2 + 2𝛺22 + 𝜆2𝑧
(

𝜆4𝛺1 + 4𝜆4𝛺12 + 𝜆6𝛺2 + 4𝜆4𝛺22
)

+2𝜆4𝜆4𝑧
(

𝛺11 + 2𝜆2𝛺12 + 𝜆4𝛺22
)]

, (B.1)

𝛤0111 =4𝜆−4𝜆−4𝑧 𝐷𝑟
{

𝛺16 + 𝜆2𝑧𝛺26 + 𝜆6𝜆4𝑧
(

𝛺24 + 𝜆2𝑧𝛺45𝐷
2
𝑟
)

+𝜆4𝜆𝑧𝑧
[

𝜆4𝑧𝛺24 +𝛺25 + 𝜆2𝑧
(

𝛺14 +𝛺5 + 2𝛺46𝐷
2
𝑟 +𝛺55𝐷

2
𝑟
)]

+2𝛺66𝐷
2
𝑟 + 𝜆2

[

𝜆4𝑧𝛺25 +𝛺26 + 𝜆2𝑧
(

𝛺15 + 3𝛺56𝐷
2
𝑟 + 2𝛺6

)]}

,

𝛤0122 =2𝜆−2𝜆−2𝑧 𝐷𝑟
[

𝜆2𝜆2𝑧𝛺5 +
(

1 + 𝜆4𝜆2𝑧
)

𝛺6
]

,

𝛤0133 =2𝜆−2𝜆−2𝑧 𝐷𝑟
[

𝜆2𝜆2𝑧𝛺5 +
(

1 + 𝜆2𝜆4𝑧
)

𝛺6
]

,

𝛤0221 =4𝜆−2𝜆−4𝑧 𝐷𝑟
[

𝜆6𝜆6𝑧
(

𝛺14 + 𝜆2𝑧𝛺24
)

+ 𝜆4𝜆4𝑧
(

𝛺15 +𝛺24 + 𝜆2𝑧𝛺25
)

+𝛺26 + 𝜆2𝜆2𝑧
(

𝛺16 +𝛺25 + 𝜆2𝑧𝛺26
)]

,

𝛤0331 =4𝜆−4𝜆−2𝑧 𝐷𝑟
[

𝜆6𝜆6𝑧
(

𝛺14 + 𝜆2𝛺24
)

+ 𝜆4𝜆4𝑧
(

𝛺15 +𝛺24 + 𝜆2𝛺25
)

+𝛺26 + 𝜆2𝜆2𝑧
(

𝛺16 +𝛺25 + 𝜆2𝛺26
)]

, (B.2)

𝐾011 =𝜆−4𝜆−4𝑧
[

2𝜆2𝜆2𝑧
(

𝜆2𝜆2𝑧𝛺5 +𝛺6 + 𝜆4𝜆4𝑧𝛺4
)

+ 4𝐷2
𝑟
(

𝜆8𝜆8𝑧𝛺44 + 2𝜆6𝜆6𝑧𝛺45 + 2𝜆4𝜆4𝑧𝛺46

+𝜆4𝜆4𝑧𝛺55 + 2𝜆2𝜆2𝑧𝛺56 +𝛺66
)]

,

𝐾022 =2
(

𝛺5 + 𝜆2𝛺6 + 𝜆−2𝛺4
)

, 𝐾033 = 2
(

𝛺5 + 𝜆2𝑧𝛺6 + 𝜆−2𝑧 𝛺4
)

, (B.3)

where 𝛺𝑖𝑗 = 𝜕2𝛺∕𝜕𝐼𝑖𝜕𝐼𝑗 , and 𝛺 is the energy function of the material
in terms of the following five scalar invariants

𝐼1 = tr𝒄, 𝐼2 = tr
(

𝒄−1
)

, 𝐼4 = 𝑫𝑙 ⋅𝑫𝑙 , 𝐼5 = 𝑫𝑙 ⋅𝒄𝑫𝑙 , 𝐼6 = 𝑫𝑙 ⋅𝒄2𝑫𝑙 ,

(B.4)

where 𝒄 = 𝑭 T𝑭 is the right Cauchy–Green deformation tensor and
𝑫𝑙 = 𝑭 −1𝑫 is the nominal electric displacement.
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