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A B S T R A C T

Pull-in (or electro-mechanical) instability occurs when a drastic decrease in the thickness of a dielectric
elastomer results in electrical breakdown, which limits the applications of dielectric devices. Here we derive the
criterions for determining the pull-in instability of dielectrics actuated by different loading methods: voltage-
control, charge-control, fixed pre-stress and fixed pre-stretch, by analyzing the free energy of the actuated
systems. The Hessian criterion identifies a maximum in the loading curve beyond which the elastomer will
stretch rapidly and lose stability, and can be seen as a path to failure. We present numerical calculations
for neo-Hookean ideal dielectrics, and obtain the maximum allowable actuation stretch of a dielectric before
failure by electrical breakdown. We find that applying a fixed pre-stress or a fixed pre-stretch to a charge-driven
dielectric may decrease the stretchability of the elastomer, a scenario which is the opposite of what happens in
the case of a voltage-driven dielectric. Results show that a reversible large actuation of a dielectric elastomer,
free of the pull-in instability, can be achieved by tuning the actuation method.

1. Introduction

As some of the most promising soft smart materials capable of
performing large actuation deformation in fast response to electrical
simulation, dielectric elastomers (DEs) attract considerable attention
from academia and industry alike, with potential applications as actua-
tors, sensors, flexible electronic devices, soft robots, energy harvesters,
etc. Their working principle is that in the presence of an electric field,
large electrostrictive stresses can be generated and make them thicker
or thinner, and consequently (because they are incompressible), shrink
or stretch to large extents [1–5].

A widely adopted mechanism for creating the electrical activation
of a DE is to apply a voltage through two compliant electrodes glued
on the faces of the DE plate; this is the so-called voltage-controlled
method, see Fig. 1a,b and References [6–8] for example. Generally,
the application of a constant voltage causes expansion in area and
reduction in thickness of the plate, and as a result leads to an increase
in the electric field. Pull-in instability occurs once the applied voltage
reaches a threshold value, at which the plate starts expanding rapidly
towards a much higher value of stretch. Zhao and Suo [9] showed that
this electro-mechanical instability occurs when the Hessian matrix of
the free energy of the whole system ceases to be positive definite, so
that the equilibrium – an extremum of the free energy – is no longer a
minimum of the free energy. In practice, the pull-in instability of the DE
may induce electrical breakdown [10,11] or extensional buckling [12]

∗ Corresponding author at: School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland.
E-mail address: michel.destrade@nuigalway.ie (M. Destrade).

of the elastomer, and may thus restrict the actuation stretch. Several
methods, such as applying pre-stress and tuning material stretchability
and dielectricity, have been proposed to harness the pull-in instability
of the DE efficiently [13–15].

Charge-controlled actuation (Fig. 1c,d) is another effective method to
generate an electric field to activate a deformable capacitor made of
soft DE, by spraying charges on the plate with [16] or without [17]
electrodes. In contrast to the voltage-controlled actuated DE, it is
found that a large reversible actuation can be obtained for the charge-
controlled actuated DE without pull-in instability [17,18]. However,
the physical mechanism at play to eliminate this instability is still not
completely understood.

In this paper, we investigate the nonlinear responses of voltage-
and charge-controlled DE plates in turn. In particular we formulate
the Hessian stability criterion for a charge-controlled DE plate with
different boundary conditions, by analyzing the variations of the free
energy of the system, and use it to study the pull-in instability of the
elastomer. We show that from an energy perspective, charge-controlled
actuation of neo-Hookean ideal dielectric plates is always stable and
that the pull-in instability may be suppressed.

Here we focus on the pull-in instability of a DE plate, a homoge-
neous deformation mode of instability, which is based on the variations
of the free energy and does not account for the plate thickness. It
has been shown that pull-in instability may also induce wrinkling
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instability, which depends on the thickness of the plate [12]. To pre-
dict this inhomogeneous instability mode, the incremental theory of
electroelasticity [12,19–21] should be employed, but this is beyond the
scope of the current paper.

We consider two scenarios: (i) one where the DE plate is subject
to a fixed pre-stress, typically by applying weights on its lateral faces;
and (ii) another where the plate is held at a fixed pre-stretch in one
in-plane direction. The maximal allowable actuation areal expansion
of each case is investigated, by comparing the critical value of voltage
or electric displacement for the onset of pull-in instability with that for
electrical breakdown. The results indicate that a DE plate may increase
its actuation area more in Case (ii) than in Case (i), for voltage- and for
charge-controlled actuations.

2. Energy stability analysis

Consider a homogeneously deformed incompressible DE plate sub-
ject to mechanical loadings 𝑃1, 𝑃2 along the 𝑥1 and 𝑥2 directions and a
homogeneous nominal electric field 𝐸0 along the thickness of the plate,
with associated nominal stress 𝑠1, 𝑠2 and nominal electric displacement
𝐷0, respectively. The plate is assumed to be traction-free on its faces,
i.e., 𝑠3 = 0.

The free energy (per unit volume) of the deforming system reads [9]

𝐺 = 𝑊
(

𝜆1, 𝜆2, 𝐷0
)

− 𝑠1𝜆1 − 𝑠2𝜆2 − 𝐸0𝐷0, (2.1)

where 𝑊
(

𝜆1, 𝜆2, 𝐷0
)

is the energy function of the DE plate, 𝜆𝑖 is the
principal stretch along the 𝑥𝑖 (𝑖 = 1, 2, 3) direction, with 𝜆3 = 𝜆−11 𝜆−12
due to the incompressibility of the material.

On the other hand, we may define another energy function of
the elastomer as 𝛺 = 𝛺(𝜆1, 𝜆2, 𝐸0), through the partial Legendre
transform [2]

𝑊
(

𝜆1, 𝜆2, 𝐷0
)

= 𝛺
(

𝜆1, 𝜆2, 𝐸0
)

+ 𝐸0𝐷0. (2.2)

The first variation of Eq. (2.2) yields [22]

𝑊𝜆1𝛿𝜆1+𝑊𝜆2𝛿𝜆2+𝑊𝐷0
𝛿𝐷0 = 𝛺𝜆1𝛿𝜆1+𝛺𝜆2𝛿𝜆2+𝛺𝐸0

𝛿𝐸0+𝐸0𝛿𝐷0+𝐷0𝛿𝐸0,

(2.3)

leading to the identities

𝑊𝜆1 = 𝛺𝜆1 , 𝑊𝜆2 = 𝛺𝜆2 , 𝐸0 = 𝑊𝐷0
, 𝐷0 = −𝛺𝐸0

. (2.4)

Note that here and throughout the paper, subscripts of 𝑊 and 𝛺 denote
partial derivatives.

Equilibrium corresponds to the vanishing of the first variation of the
free energy of the system, i.e. 𝛿𝐺 = 0, which using Eq. (2.4) reads

𝑠1 = 𝑊𝜆1 = 𝛺𝜆1 , 𝑠2 = 𝑊𝜆2 = 𝛺𝜆2 , 𝐸0 = 𝑊𝐷0
, 𝐷0 = −𝛺𝐸0

. (2.5)

A thermodynamic analysis of the system [9] says that the second
variation of its free energy must be positive for the equilibrium to be
stable, i.e.,

𝛿2𝐺 = 𝑊𝜆1𝜆1

(

𝛿𝜆1
)2 + 2𝑊𝜆1𝜆2𝛿𝜆1𝛿𝜆2 + 2𝑊𝜆1𝐷0

𝛿𝜆1𝛿𝐷0

+𝑊𝜆2𝜆2

(

𝛿𝜆2
)2 + 2𝑊𝜆2𝐷0

𝛿𝜆2𝛿𝐷0 +𝑊𝐷0𝐷0

(

𝛿𝐷0
)2 > 0. (2.6)

Now the pull-in instability of the elastomer occurs when this second
variation ceases to be positive and

𝛿2𝐺 = 0, (2.7)

i.e., when 𝑯𝑒, the Hessian matrix of 𝑊 ,

𝑯𝑒 =
⎡

⎢

⎢

⎣

𝑊𝜆1𝜆1 𝑊𝜆1𝜆2 𝑊𝜆1𝐷0
𝑊𝜆1𝜆2 𝑊𝜆2𝜆2 𝑊𝜆2𝐷0
𝑊𝜆1𝐷0

𝑊𝜆2𝐷0
𝑊𝐷0𝐷0

⎤

⎥

⎥

⎦

, (2.8)

ceases to be positive definite [9].

On the other hand, by eliminating the terms involving 𝛿2𝜆1 , 𝛿2𝜆2,
𝛿2𝐷0, 𝛿2𝐸0 and using the connection 𝛿𝐷0 = −

(

𝛺𝜆1𝐸0
𝛿𝜆1 +𝛺𝜆2𝐸0

𝛿𝜆2
+𝛺𝐸0𝐸0

𝛿𝐸0

)

found from Eq. (2.4)4, we find that the second variation
of Eq. (2.2) can be written as

𝑊𝜆1𝜆1

(

𝛿𝜆1
)2 + 2𝑊𝜆1𝜆2𝛿𝜆1𝛿𝜆2 + 2𝑊𝜆1𝐷0

𝛿𝜆1𝛿𝐷0

+𝑊𝜆2𝜆2

(

𝛿𝜆2
)2 + 2𝑊𝜆2𝐷0

𝛿𝜆2𝛿𝐷0 +𝑊𝐷0𝐷0

(

𝛿𝐷0
)2

= 𝛺𝜆1𝜆1

(

𝛿𝜆1
)2 + 2𝛺𝜆1𝜆2𝛿𝜆1𝛿𝜆2 +𝛺𝜆2𝜆2

(

𝛿𝜆2
)2 −𝛺𝐸0𝐸0

(

𝛿𝐸0
)2 . (2.9)

Here we can see that the left-hand side of Eq. (2.9) is actually the
second variation of 𝐺, the free energy of the system (2.6), which must
be positive for stability. Equivalently, the right-hand side of Eq. (2.9)
must be positive for stability.

For the case of an equi-biaxially deformed DE plate, when 𝑠1 = 𝑠2 =
𝑠 and 𝜆1 = 𝜆2 = 𝜆, we introduce the following reduced energy functions,

𝑤
(

𝜆,𝐷0
)

= 𝑊
(

𝜆, 𝜆,𝐷0
)

, 𝜔
(

𝜆, 𝐸0
)

= 𝛺
(

𝜆, 𝜆, 𝐸0
)

. (2.10)

Correspondingly, Eqs. (2.5) and (2.9) reduce to

𝑠 = 𝑤𝜆∕2 = 𝜔𝜆∕2, 𝐸0 = 𝑤𝐷0
, 𝐷0 = −𝜔𝐸0

, (2.11)

and

𝑤𝜆𝜆 (𝛿𝜆)2 + 2𝑤𝜆𝐷0
𝛿𝜆𝛿𝐷0 +𝑤𝐷0𝐷0

(

𝛿𝐷0
)2 = 𝜔𝜆𝜆(𝛿𝜆)2 − 𝜔𝐸0𝐸0

(

𝛿𝐸0
)2 ,

(2.12)

respectively.
In the paper, we perform numerical calculations with the so-called

neo-Hookean ideal dielectric model for illustration, defined by

𝑊
(

𝜆1, 𝜆2, 𝐷0
)

=
𝜇
2
(

𝜆21 + 𝜆22 + 𝜆−21 𝜆−22 − 3
)

+
𝐷2

0

2𝜀𝜆21𝜆
2
2

,

𝑤
(

𝜆,𝐷0
)

=
𝜇
2
(

2𝜆2 + 𝜆−4 − 3
)

+
𝐷2

0

2𝜀𝜆4
,

𝛺
(

𝜆1, 𝜆2, 𝐸0
)

=
𝜇
2
(

𝜆21 + 𝜆22 + 𝜆−21 𝜆−22 − 3
)

−
𝜀𝜆21𝜆

2
2𝐸

2
0

2
,

𝜔
(

𝜆, 𝐸0
)

=
𝜇
2
(

2𝜆2 + 𝜆−4 − 3
)

−
𝜀𝜆4𝐸2

0
2

. (2.13)

where 𝜇 is the initial shear modulus in the absence of electric field (in
Pa) and 𝜀 is the permittivity (in F/m) of the elastomer.

3. Voltage-controlled actuation of a DE plate

3.1. Case (i): Fixed equi-biaxial pre-stress

We first consider an incompressible DE plate actuated by a fixed
voltage 𝑉 through the thickness and pre-stressed by two weights 𝑃1
and 𝑃2 along the 𝑥1 and 𝑥2 directions, as depicted in Fig. 1(a). Here
we focus on the case of equi-biaxial deformation, with 𝑃1 = 𝑃2 = 𝑃 .
For this problem we adopt the energy function 𝜔

(

𝜆, 𝐸0
)

to describe
the nonlinear behavior of the elastomer.

From Eqs. (2.11) and (2.13), we obtain the equilibrium equations
for the neo-Hookean ideal DE plate as

𝑠 = 𝜆 − 𝜆−5 − 𝐸2
0𝜆

3, 𝐸0 = 𝜆−4𝐷0, (3.1)

where 𝑠 = 𝑠∕𝜇, 𝐸0 = 𝐸0
√

𝜀∕𝜇 and 𝐷0 = 𝐷0∕
√

𝜇𝜀 are non-dimensional
measures of nominal stress, nominal electric field and nominal electric
displacement, respectively.

Vanishing of the right-hand side of Eq. (2.12) yields the following
criterion for the pull-in instability of the elastomer

5 + 𝜆6 − 3𝐸2
0𝜆

8 = 0, (3.2)

which is the Hessian criterion established by Zhao and Suo [9].
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Fig. 1. DEs coated with two compliant electrodes activated by fixed voltage (left column) and fixed charge (right column). (a), (c): The plates are pre-stressed by two weights 𝑃1
and 𝑃2. (b), (d): The plates are pre-stretched up to a fixed value in one in-plane direction. (e), (f): Top view of dielectric plates in (b) and (c), respectively.

Experiments show that the actuation of a DE is limited by its
dielectric strength, in the sense that the electric field cannot go beyond
𝐸𝐵 = 𝑉𝐵∕(ℎ

√

𝜇∕𝜀) (dimensionless), where 𝑉𝐵 is the critical applied
voltage and ℎ is the deformed thickness of the plate, without failing
by electrical breakdown [10,23]. For a deformed incompressible DE,
we have the relation

𝐸0𝐵 = 𝐸𝐵∕(𝜆1𝜆2), (3.3)

where 𝐸0𝐵 = 𝑉𝐵∕(𝐻
√

𝜇∕𝜀) is the nominal measure of 𝐸𝐵 .
Fig. 2 shows the effect of the equi-biaxial pre-stress on the nonlinear

response of the DE plate and its maximal allowable stretch. Solid lines
are the 𝐸0−𝜆 curves of the plate with pre-stresses 𝑠 = 0, 1, 2. Dotted lines
corresponds to the onset of pull-in instability of the elastomer (start of
the dramatic increase in the area). Once the instability is triggered, the
elastomer no longer follows the dashed curve predicted by Eq. (3.1),
but experiences a sudden increase (represented by the arrow) in the
stretch instead, until fails by electric breakdown represented by the
blue dash-dotted curve.

Measurements of strain, electric field, modulus, and dielectric con-
stant of several commonly used dielectric polymers are presented by
Pelrine et al. [23] in their Table 1. For this paper, we took the
dimensionless breakdown electric field as 𝐸𝐵 = 5, the same value as
Koh et al. [6].

In this study we highlight the so-called actuation stretch [9], defined
as 𝜆ac

𝑖 = 𝜆𝑖∕𝜆
𝑝
𝑖 (𝑖 = 1, 2), where 𝜆𝑝𝑖 is the pre-stretch in 𝑖th direction due

to the mechanical loads in the absence of applied voltage. Similarly, the
actuation expansion in area is defined as 𝐴ac = 𝐴∕𝐴𝑝, where 𝐴 = 𝜆1𝜆2
is the total expansion of area of the deformed plate and 𝐴𝑝 = 𝜆𝑝1𝜆

𝑝
2 is the

areal expansion due to the mechanical loads. Clearly these quantities
are linked as 𝐴ac = 𝜆ac

1 𝜆ac
2 .

We can see from Fig. 2 that the maximal allowable actuation stretch
of the plate with no mechanical pre-stress (𝑠 = 0), is 𝜆ac

max ≃ 1.26,
with corresponding actuation expansion in area ≃ 160%. We find that
applying a pre-stress enhances the actuation of the DE plate: the max-
imal allowable actuation stretch of the elastomer is 𝜆ac

max ≃ 1.39, 1.5,
with actuation expansion in area 𝐴ac

max ≃ 193%, 225%, respectively, as
𝑠 = 1, 2 is applied.

Fig. 2. Effect of fixed pre-stresses (𝑠 = 0, 1, 2) on the behavior of an equi-biaxially
deformed DE plate actuated by voltage and pre-stress. The critical points for instability
are marked by crosses. The elastomer may fail by electrical breakdown after pull-
in instability is triggered, as the snap expansion (arrows) hits the electro-mechanical
breakdown (dashed blue curve). The application of pre-stress enhances the stretchability
of the elastomer. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

3.2. Case (II): Fixed pre-stretch

Next we consider an incompressible DE plate with one of the in-
plane stretches, 𝜆2 say, fixed to a certain amount and subject to a fixed
voltage 𝑉 , see Fig. 1(b),(e). The equilibrium equations can then be
written as

𝑠1 =
𝜕𝛺
𝜕𝜆1

, 𝐷0 = − 𝜕𝛺
𝜕𝐸0

, (3.4)
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Fig. 3. Effect of a fixed pre-stretch (𝜆2 = 1.0, 1.3, 2.0) on the behavior of a DE plate
actuated by voltage. The black dotted lines correspond to the onset of pull-in instability
of the elastomer; they only meet the loading curves asymptotically. The critical points
for electrical breakdown are marked as crosses. In this case, a large reversible actuation
can be obtained without pull-in instability.

where 𝛺(𝜆1, 𝐸0) = 𝛺(𝜆1, 𝜆2, 𝐸0)|𝜆2 fixed, and 𝑠1 is the in-plane nominal
stress in 𝑥1−direction (𝑠1 = 0 here). Again the plate is assumed to be
traction-free on its main faces (𝑠3 = 0).

For neo-Hookean ideal dielectrics, Eq. (3.4) reads

0 = 𝜆1 − 𝜆−31 𝜆−22 − 𝐸2
0𝜆1𝜆

2
2, 𝐸0 = 𝜆−21 𝜆−22 𝐷0, (3.5)

and pull-in instability happens when the right-hand side of Eq. (2.9)
vanishes, i.e. when

3 + 𝜆41𝜆
2
2(1 − 𝐸2

0𝜆
2
2) = 0. (3.6)

Fig. 3 displays the effect of the fixed pre-stretch 𝜆2 on the nonlinear
𝐸0 − 𝜆1 response for a DE plate actuated by voltage. Here 𝜆2 is held
at 1, 1.3, 2. As the voltage applied increases, 𝜆1 increases monotonically
along the solid lines obtained from Eq. (3.5). We see that for a pre-
stretched DE plate, the stretch 𝜆1 increases monotonically with the
nominal electric field 𝐸0, and that there is no intersection between the
𝐸0−𝜆1 curve and the curves of pull-in instability (except asymptotically
as 𝜆1 → ∞). It follows that a reversible stretch of the elastomer can be
obtained without pull-in instability, as long as it has not reached the
electrical breakdown condition.

Also, the stretchability of a pre-stretched elastomer is much better
than in the previous case of equi-biaxial loading (Fig. 2), with maximal
allowable actual stretch 𝜆1max ≃ 5, which is almost independent of
the applied pre-stretch. To show this we note that 𝜆1max is the real
root of the equation 𝜆21 = 𝐸2

𝐵 + 𝜆−21 𝜆−22 , see Eqs. (3.3) and (3.5)1.
Here 𝜆−21 𝜆−22 is the square of the stretch through the thickness, so that
𝜆−21max𝜆

−2
2max < 1 ≪ 𝐸2

𝐵 when electrical breakdown happens. As a result,
𝜆1max ≃ 𝐸𝐵 , always. As the fixed stretch 𝜆2 increases from 1 to 1.3 to
2, 𝜆ac

1max and 𝐴ac
max both increase from 500% to 568% to 700%.

4. Charge-controlled actuation of a DE plate

4.1. Case (i): Fixed equi-biaxial pre-stress

Here we consider a deformed DE plate subject to fixed charge and
mechanical loading 𝑃1 and 𝑃2 as depicted in Fig. 1c. For the case of
equi-biaxial deformation 𝑃1 = 𝑃2 = 𝑃 we use the energy function
𝑤(𝜆,𝐷0) to capture the nonlinear response of the elastomer.

Fig. 4. Effect of fixed pre-stress (𝑠 = 0, 1, 2) on the behavior of an equi-biaxially
deformed DE plate actuated by charges deposited on its faces. The critical points
for electrical breakdown are marked as crosses. A large reversible actuation can be
obtained without pull-in instability, but the application of a fixed pre-stress decreases
the actuation stretchability of the elastomer.

According to Eqs. (2.11) and (2.13), the governing equations of the
neo-Hookean ideal DE plate read

𝑠 = 𝜆 − 𝜆−5 − 𝐸2
0𝜆

3, 𝐸0 = 𝜆−4𝐷0. (4.1)

The criterion for instability, seen as the vanishing of the left-hand
side of Eq. (2.12), reads

𝜆6 + 5(1 + 𝐸2
0𝜆

8) = 0, (4.2)

which has no real root. Thus pull-in (Hessian) instability is suppressed
here.

Fig. 4 depicts the effect of a fixed pre-stress (𝑠 = 0, 1, 2) on the
nonlinear response of an equi-biaxially deformed DE plate and its
maximal allowable stretch. Solid lines are the log10(𝐷0) − 𝜆 curves. As
the applied charge increases, the elastomer expands monotonically by
a large amount without developing pull-in instability, until it fails by
electric breakdown. As the pre-stress 𝑠 increases from 0 to 1 to 2, 𝜆ac

max
and 𝐴ac

max decrease from 4.8 to 4.3 to 3.05, and from 2,304% to 1,849%
to 930%, respectively.

4.2. Case (II): Fixed pre-stretch

Here we adopt the energy function 𝑊 (𝜆1, 𝐷0) = 𝑊 (𝜆1, 𝜆2, 𝐷0)|𝜆2 fixed
to write the equilibrium equation of the plate as

𝑠1 =
𝜕𝑊
𝜕𝜆1

, 𝐸0 =
𝜕𝑊
𝜕𝐷0

, (4.3)

which for neo-Hookean ideal dielectrics reads

0 = 𝜆1 − 𝜆−31 𝜆−22 (𝐷2
0 + 1), 𝐸0 = 𝜆−21 𝜆−22 𝐷0. (4.4)

Vanishing of the left-hand side of Eq. (2.9) yields the pull-in crite-
rion of this problem as

3 + 3𝐷2
0 + 𝜆41𝜆

2
2 = 0, (4.5)

which can never be achieved. Thus pull-in (Hessian) instability of the
dielectric elastomer is suppressed for this problem as well.

Fig. 5 displays the effect of a fixed pre-stretch on the nonlinear
response of the DE plate actuated by charge and its maximal allowable
stretch. The elastomer is initially pre-stretched in 𝑥2 direction to a
fixed amount (𝜆2 = 1, 1.3, 2, respectively). We can see that for this
problem, the pull-in instability can be suppressed. On the other hand,
the application of a fixed pre-stretch decreases the maximal allowable
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Fig. 5. Effect of a fixed pre-stretch (𝜆2 = 1.0, 1.3, 2.0) on the behavior of a DE plate
actuated by spraying charges on its faces. The critical points for electrical breakdown
are marked as crosses. A large reversible actuation can be obtained without pull-in
instability, but the application of a fixed pre-stretch may reduce the stretchability of
the elastomer.

actuation stretch and maximal actuation areal expansion, which is in
contrast to the corresponding case of a voltage-controlled actuated DE,
displayed in Fig. 3.

5. Conclusions

A DE plate contracts in thickness and expands in area when subject
to an electric field. Pull-in instability occurs as the applied electric field
reaches a critical value, driving the elastomer to thin down rapidly. On
one hand, pull-in instability may lead to electric breakdown. On the
other hand, the large deformation induced by pull-in instability can
be exploited in the design of high-performance actuators and sensors
because the elastomer may enlarge its area severalfold. The pull-in
instability can be suppressed or delayed by pre-stretching the elastomer
or enhancing its stiffening property. Dielectric with designed stiffening
property may survive the pull-in instability, and large deformation can
be obtained without electric breakdown [24].

In this paper, we explored ways to achieve large deformation of
dielectrics by tuning the loading protocol. Using the theory of nonlinear
electro-elasticity, we investigated the effect of actuation methods on
the nonlinear response and pull-in instability of a DE plate. We intro-
duced two equivalent energy functions 𝑊 (𝜆1, 𝜆2, 𝐷0) and 𝛺(𝜆1, 𝜆2, 𝐸0)
to capture the nonlinear response of the DE plate. In fact, due to the
connection (2.1), the two functions lead to identical results in the
investigation of instability.

We derived the forms of the criterion predicting pull-in instability
when the elastomer is actuated by voltage or by charge. It proved
convenient to use 𝛺(𝜆1, 𝜆2, 𝐸0) to study pull-in stability of a voltage-
controlled actuated DE plate, and to use 𝑊 (𝜆1, 𝜆2, 𝐷0) for the case
of a charge-controlled actuated DE. For a voltage-driven DE free to
expand equi-biaxially, pull-in instability may be triggered once a suf-
ficiently large voltage is applied, resulting in electrical breakdown of
the elastomer, while the application of a fixed pre-stress can increase
its maximal allowable actuation stretch. For a voltage-driven DE with
constant pre-stretch or a charge-driven DE, a reversible large actuation
can be obtained without pull-in instability. The results showed that
pre-stressing or pre-stretching a charge-driven DE can decrease the
stretchability of the elastomer, which is the opposite of what happens
in the case of a voltage-driven DE. This study provides a new route for
the design of DE actuators with large deformations.

Note that we did not consider viscosity [13,25] in any way, al-
though experimental observations have exposed its effect on electro-
mechanical instability of DE.
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