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In this paper, three-dimensional exact solutions of adhesive contact between a pre-deformed compress-
ible soft electroactive half-space and an axisymmetric rigid indenter are presented. The change of surface
adhesion energy during the contact is examined by using the modified JKR model, which accounts for the
real contact area instead of the projected area. With the help of new results in the potential theory
method, all physical (field) variables are derived in terms of elementary functions for three common
types of axisymmetric indenters (flat-ended, conical, and spherical). The analytical contact relations for
different indenter geometries and material properties are provided and summarized in Tables 2 and 3
to serve a solid base for revealing the underlying electromechanical mechanism of soft electroactive
materials. For numerical illustration, neo-Hookean isotropic electroactive material is considered. The
simulation results clearly demonstrate that both the mechanical and electric biasing fields significantly
affect the indentation measurement of the electroactive material. Moreover, at either micro- or nano-
scale, adhesion plays a prominent role in the indentation responses. It is of interest that, even without
adhesion, the normal stress somewhere in the contact region may become tensile under a prescribed
pre-stretch when the biasing electric displacement exceeds a certain value. This abnormal phenomenon
actually corresponds to surface instability of the half-space under the biasing field. In the case of adhesive
contact, other than the surface instability, the value of surface adhesion energy between the probe and
the sample will impose a constraint on the validity of indentation analysis within the linear elastic
regime.
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1. Introduction SEA materials usually lead to more complicated nonlinear

responses than those of the pure elastic ones. To address the extra

Since the early 1990s, soft electroactive (SEA) materials, mostly
also referred to as dielectric elastomers (DEs) that can fast induce
large deformation when subjected to an electric field, have
emerged as an inspiring subject for their remarkable muscle-like
capability (Bauer et al., 2014; Mirfakhrai et al., 2007; Mirvakili
and Hunter, 2018; Suo, 2010; Zhang et al., 2002). Following the
pioneering works of Pelrine et al. (1998), Pelrine et al. (2000), much
effort has been devoted to the fabrication of optimized SEA mate-
rials and design of SEA-based devices (Bar-Cohen, 2004; Brochu
and Pei, 2010; Carpi et al., 2008a; Mirvakili and Hunter, 2018;
O’Halloran et al., 2008; Shankar et al., 2007; Trivedi et al., 2008).
In these applications, the intricate electromechanical coupling
effect and the strong nonlinearity due to large deformation in
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complexity from these two features, we may adopt the general
nonlinear continuum theory of electroelasticity, which was first
proposed by Toupin (1956) more than sixty years ago and has been
given new impetus thanks to the explosive applications of SEA
materials in the last two decades (Dorfmann and Ogden, 2010a,
2014; Suo et al., 2008). So far, such theory has been successfully
implemented to solve various boundary-value problems of soft
dielectrics, including instability, vibration, wave propagation, etc.
(Dorfmann and Ogden, 2010b; Getz et al.,, 2017; Su et al., 2018;
Wu et al., 2017). However, many fundamental questions on the
behavior of SEA materials remain largely unanswered. In particu-
lar, more detailed and accurate microstructural information is still
required for the design of SEA devices.

Nanoindentation and scanning probe microscopy (SPM) have
been widely used to detect local material properties of membranes,
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Nomenclature

List of main symbols

d Indentation depth

a Radius of contact

B Half of the apex angle of a conical indenter

o1 Coefficients in displacement u,, see Appendix A.2

01 Incremental normal stress

V1i Coefficients in normal stress 0,1, see Appendix A.2

O Incremental shear stress

Kf Stress intensity factor for a conducting indenter, see Eq.
(A26)

KS Electric displacement intensity factor, see Eq. (A26)

P Total force on a conducting indenter, see Eq. (A44)

K Stress intensity factor for an insulating indenter, see
Eq. (A49)

jil Total force on an insulating indenter, see Eq. (A59)

Py Pull-out force for an insulating flat-ended indenter, see
Eq. (10)

d., Displacement of an insulating flat-ended indenter when
p} = pl see Fig. 3 (a) and Eq. (11)

ap Radius of contact induced by adhesion, see Fig. 3 and

Egs. (12)-(16)

Zik 8k = Zlehfjaki, (,k =1,2), effective material param-
eters in incremental stresses and electric displacements,
see Appendix A.3

®o Electric potential prescribed on a conducting indenter

n Surface adhesion energy per unit area

R Radius of a spherical indenter

i Coefficients in electric potential ¢, see Appendix A.2

Opn Incremental electric displacement

Vai Coefficients in electric displacement ¢, see Appendix
A2

W4 Coefficients in shear stress 7,1, see Appendix A.2

L1 Core function in the solution of g,; for a conducting
indenter

Y2 Core function in the solution of 7, for a conducting
indenter

ps Total charge on a conducting indenter, see Eq. (A44)

Lo Core function in the solution of ¢, for an insulating
indenter

Ao Ao = 81182 — 812821, defined in Appendix A.3

o Pull-out force for a conducting flat-ended indenter, see
Eq. (10)

dS, Displacement of a conducting flat-ended indenter when
p§ = pS,. see Fig. 3(a) and Eq. (11)

hy; Coefficients in potential function ;, defined in Appen-
dix B.1

biological materials, and other functional materials (Azzez et al.,
2018; Bonilla et al., 2015; Choi et al., 2003; Ebenstein and Pruitt,
2006; Kolluru et al., 2018; Liu et al., 2012; Osmani et al., 2017;
Racles et al., 2017; Saha and Nix, 2002; Zhang et al., 2014; Zhu
et al., 2018; Zisis et al.,, 2015). These two techniques are well
known for their high spatial resolution and easy manipulation. Fur-
thermore, they are mechanically or electrically sensitive, without
the need for large stimuli, and hence causing almost no damage
to samples. These characteristics are of great importance in the
characterization and test of SEA materials. It should be noted that
the linear contact theory provides a general theoretical and techni-
cal guidance for these two approaches, despite their differences in
technical details (Kalinin et al., 2007; Oliver and Pharr, 1992).
Ever since the original work initiated by Hertz (1881) for elas-
ticity, the studies on contact problems have been generalized to
piezoelectricity with electromechanical coupling. Giannakopoulos
and Suresh (1999) developed a general theory for the axisymmet-
ric indentation of piezoelectric materials by using Hankel trans-
form and derived the relation between the indentation force and
the depth of penetration. Chen and his co-workers (Chen, 2000;
Chen and Ding, 1999; Chen et al., 1999) presented a series of com-
plete and exact solutions for the normal contact between three
typical axisymmetric punches (flat-ended, conical, and spherical)
and a transversely isotropic piezoelectric half-space by using the
potential theory method originally proposed by Fabrikant (1989),
Fabrikant (1991). Their results were later verified by Kalinin and
his partners (Kalinin et al., 2004; Karapetian et al., 2005), who first
related the SPM responses to the three-dimensional (3D) analytical
expressions for the generalized Hertz contact model. Through their
persistent efforts, the importance of exact 3D contact solutions is
now widely understood for a more quantitative interpretation of
the SPM responses (Kalinin et al., 2007; Karapetian et al., 2009).
For example, these 3D solutions may serve as a theoretical founda-
tion for the reconstruction of 3D physical properties of the sample
with a single scan on its surface by the SPM probe. It causes almost
no damage to the sample when compared with a newly developed
conductive tomographic atomic force microscopy (Luria et al.,
2016). It should be noted that the SPM discussed here works under
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contact mode, which should be clearly distinguished from that
working under non-contact mode (Li et al., 2015). The latter relies
on the dynamic resonance of the probe-sample system. The
detailed descriptions of these two modes can be found in the
two most recent papers of Pan et al. (2013) and Zhu et al. (2018).

It is well known that pre-stretching SEA materials may enhance
their electromechanical properties dramatically (Akbari et al.,
2013; Arora et al., 2007; Brochu and Pei, 2010; Carpi and De
Rossi, 2004; Kofod et al., 2003; Li et al.,, 2019; Linnebach et al.,
2019; Lowe et al., 2005; McKay et al., 2011; Rizzello et al., 2016;
Shian et al., 2013; Su et al., 2019; Suo, 2012). Contact analysis of
a finitely deformed elastomer was first conducted by Green et al.
(1952), who considered the typical problem of a pre-strained
incompressible isotropic semi-infinite region pressed by a smooth
punch based on the general theory of small elastic deformations
superposed on finite elastic deformations. Beatty and Usmani
(1975) extended the analysis to compressible isotropic materials
and a detailed discussion was presented on the relation between
indentation response and load. These earlier results have been
taken as benchmark solutions when the electromechanical cou-
pling is absent. For example, Zheng et al. (2017) recently used
the surface Green’s function to investigate the effect of pre-
stretch on the indentation response of elastomers. Their results
perfectly agree with Beatty and Usamni’s work when considering
an equi-biaxially stretched elastomer. However, they only focused
on the purely elastic problems so that their results are not applica-
ble to the electromechanical indentation analysis of SEA materials.
Moreover, they did not consider the effect of adhesion, which may
play a significant role in the contact responses of soft elastomers. It
should be noted that, there are basically two strategies to probe the
material properties of soft materials. One is to derive approximate
analytical contact relations directly based on the nonlinear contin-
uum theory (Dagro and Ramesh, 2019), but a corresponding non-
linear indentation technique is also required. In this paper,
following the strategy initiated by Green et al. (1952), we will
employ the full nonlinear continuum theory in the
pre-deformation state, but restrict the contact deformation to be
infinitesimally small. In this case, we can use a uniform
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pre-deformation (may be finite) to stiffen the soft material, and
then use the linear contact theory for probing the material proper-
ties for which all technique details are already there or can be read-
ily improved. In this regard, the latter strategy, though a little
counterintuitive, may be practically more feasible and economic.

Recently, Zhang et al. (2012) conducted an indentation analysis
of a compressible isotropic SEA half-space subjected to a uniform
finite deformation. It is the only theoretical work on contact prob-
lem concerning the concurrent effects of finite pre-deformation
and electromechanical coupling of SEA materials, to our best
knowledge. In their analysis, in addition to a uniform finite equi-
biaxial pre-stretch in the planes parallel to the free surface, a uni-
form electric displacement is further applied which is perpendicu-
lar to the plane surface. It is found that the governing equations of
the incremental fields are similar to those of a transversely isotro-
pic piezoelectric body. Thus, the potential theory developed by
Fabrikant (1989), Fabrikant (1991) for elasticity and its extension
in piezoelectricity (Chen, 2000, 2015; Chen and Ding, 1999,
2004; Chen et al., 1999) can easily be extended to deal with the
contact problem of an SEA half-space indented by three typical
axisymmetric indenters. The results in Zhang et al. (2012) are
mathematically beautiful and complete, but there is also no
account of the effect of adhesion, which however has frequently
proved to be indispensable in the tests of soft materials at nanos-
cale (Cao et al., 2005; Ebenstein and Pruitt, 2006; Gupta et al.,
2007; Schwarz, 2003; Zisis et al., 2011). Therefore, it becomes nec-
essary and also interesting to carry out adhesive contact analysis
for SEA materials.

There are three prevailing theories or models in adhesive con-
tact analysis, i.e. the JKR model (Johnson et al., 1971), the DMT
model (Derjaguin et al., 1975), and the MD model (Maugis,
1992). The core ideas of these theories have been successfully
transplanted into the indentation analysis of piezoelectric materi-
als (Chen, 2009; Chen and Yu, 2005; Yang, 2006). Thus, they may
be further utilized without essential mathematical difficulty to
account for the adhesion effect during the indentation of the above
mentioned uniformly deformed SEA half-space. In this paper, a
modified JKR model (Lu et al., 2011; Maugis, 2000) is employed
to study the effect of adhesion by taking into account the change
of surface adhesion energy during the contact. We obtain a series
of exact solutions for the 3D electroelastic field in the half-space.
Most interestingly, for a depth-fixed, non-adhesive indentation
test of the SEA half-space, we observe that, as the biasing electric
displacement reaches a critical value, the incremental normal
stress may vanish and even become tensile. We demonstrate that
this abnormal phenomenon is caused by the surface instability of
the elastomer, which is similar to that in the purely elastic case
studied by Beatty and Usmani (1975). Further, when considering
the role of adhesion on indentation responses, we find that, by tak-
ing spherical indentation as an example, the ratio of contact radius
to the radius of indenter increases with the increasing electric bias-
ing field, and the incremental normal strain induced by indention
can exceed the regime of small (infinitesimal) deformation before
the onset of surface instability. Hence, the indentation analysis
based on the linear elastic theory becomes invalid for SEA materi-
als prior to instability. That is, the indentation-induced linear (in-
cremental) deformation is limited by the geometry of the
indenter (e.g. the radius of a spherical indenter), indentation depth
as well as the magnitude of the surface adhesion energy. These
findings imply two essential rules for the depth-fixed indentation
test of SEA materials with surface adhesion: (1) Measurements
on a pre-stressed SEA sample may fail due to the surface instability
induced by the electric biasing field; (2) When the sample is sub-
jected to a sufficiently large electric biasing field but without loss
of stability, effective measurements can only be realized by prop-
erly reducing the surface adhesion energy and/or minishing the
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indentation depth without sacrificing the resolution of indentation
image (i.e. increasing the indenter size).

The paper is structured as follows. In Section 2, we give the
basic equations governing an SEA half-space subject to a uniform
equi-biaxial stretch and a unidirectional electric displacement. In
Section 3, the exact 3D adhesive contact solutions for three typical
axisymmetric indenters (flat-ended, conical, and spherical) are
presented in terms of elementary functions, with the main analyt-
ical results summarized in Tables 2 and 3. For illustration, numer-
ical examples are considered for a compressible neo-Hookean SEA
half-space in Section 4. The present exact solutions are validated
by comparing with the finite element (FE) simulations in the
degenerated case of an elastic half-space. For the surface instability
of the SEA half-space, a certain difference in the curves of critical
electric displacement versus pre-stretch is observed between the
electrically conducting surface conditions and the electrically insu-
lating ones. Moreover, we carefully discuss the validity of the
indentation analysis under the framework of linear elasticity for
the incremental deformation. Finally, the electroelastic field vari-
ables on the surface of the half-space under spherical and conical
indenters in adhesive and non-adhesive contact cases are given
and compared, which directly indicate the significant influences
of adhesion and electric biasing field. We summarize our conclu-
sions in the last section.

2. Governing equations of a uniformly pre-deformed SEA body

We consider the contact between a rigid indenter and a pre-
deformed SEA half-space, which is subject to a uniform equi-
biaxial stretch 4; in the x; — x, plane and a uniform stretch A3 in
the direction perpendicular to the surface x; =0 as shown in
Fig. 1. The half-space is simultaneously under an electric displace-
ment vector D (in Euler form) with the non-zero component only
in the x3 direction. Dorfmann and Ogden (2010b) developed an
excellent general framework to describe the nonlinear electroelastic
response of SEA materials. The linearized equations governing the
infinitesimal incremental motion superimposed on a finitely
deformed SEA body were also established (Dorfmann and Ogden,
2010b). All the essential formulations are summarized in Appendix
Al

The pre-deformed state of the SEA half-space then can be

Fig. 1. The uniformly pre-deformed half-space and the Cartesian coordinates.
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described by

F = diag(41,/1,/3), b = ¢ = diag(/2,72,23), D =[0,0,D5]" (1)

where F is the deformation gradient tensor, and b and c are the left
and right Cauchy-Green tensors, respectively. For the incremental
field superimposed on the above pre-deformed state of an isotropic
SEA half-space, the following linear constitutive equations can be
obtained (Dorfmann and Ogden, 2010b)

uy
DXy

T ug
Ton =cn 2 ,,X1 tClug, Tl + e 22 (,X3

duy
[29)

dus

+C13 o

Tox :Clzm-l-Cn +e3 22

()X3
ou au: our
T0337C1301+C13 e T 0335 3-Hhadx )
au. ou
To12 = Ceo Dxl + Ces d,‘]z Tos1 = Cs 92 0X3 T+ Css g T e1s 32 0x1 ;

Toz1 = Cos 2 @ + Coo 22 0x , Tozs = css 22 (M 2+ Cs5 9x3 +ep5 92 %

o o o
Toi3 = Css au] +Css g+ e1s 22 o . Tos2 = Css axz + Cs8 52 + €15

122 Xy ?
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a
Dio; = 315<d—]+0—3) — &g

D, = t’:‘15<(,,(3 +372) —en gL 3)

Xy ?

duy 4 oup 0“3 99
Dio3 = €3 (ax + BXz) 1 €335, — €335,

where u; are the components of the incremental displacement vector,
¢ is the electric potential, To,-j are the components of the “push-

forward” incremental nominal stress tensor, and Dyy; are the compo-
nents of the “push-forward” incremental Lagrangian electric dis-
placement vector. ¢y, e;, and &; are the effective elastic, piezoelectric
and dielectric constants, which depend on the pre-deformation. In
the current situation, these constants are functions of 11, /3 and Ds.
The equilibrium equations for the incremental field are provided
in Eq. (A5), where the last equation is automatically satisfied by
noticing that the “push-forward” incremental Lagrangian electric
field vector is expressed as the negative gradient of the electric
potential (i.e. E, = —grad¢). According to Zhang et al. (2012), the
general solution to the governing equations in Egs. (2), (3) and
(A5) for axisymmetric problems in cylindrical coordinates (p, 6, z) is

uy=0 wy=u,= Eﬁxu?;f'»
3 4)
oy )
Uy = 2% T'f(,; =0 = Z % lz;ﬁ,'
iz

where ; (i=1, 2, 3) are quasi-harmonic functions satisfying
Eq. (A10), p is the radial coordinate, and z; = s;z = s;x3, with s; and
o; all defined in Appendix A.2. The incremental stresses and electric
displacements can be obtained accordingly as

3
. 32,/,.
021 =Toz = Zyli(???’? Op1 = TOZI’ - Z W], f/’PUZ ’
i=1 !

3 3
_r Py T i
On = DIOZ = Z ’))2,' ;)Zl/;/' ) Upz = TOpz = Z () 3pg/z'i ) (5)
i=1 i i=1

3 3
_ i : Py _ 7 2
O3 = TOpp + Top = Z Vi (a;él y Op3 = DIOp = E :w3i éﬂgéi .
i=1 i i=1

where y; and @; are also defined in Appendix A.2.
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3. Exact adhesive contact analysis
3.1. Indentation by a rigid punch

The adhesive contact of a pre-deformed compressible SEA half-
space with an axisymmetric rigid indenter is depicted in Fig. 2. The
shape of the indenter is assumed to be described by a general
power series

f(p) =3 rap", (6)

where r, (n =1,2,...) are the shape parameters. For the three com-
mon indenters (i.e. flat-ended, conical, and spherical), these param-
eters are explicitly listed in Table 1, where p and R are the half of the
apex angle of the cone and the radius of the spherical indenter,
respectively, and &, is the Kronecker delta.

The contact is assumed to be perfectly frictionless. The mechan-
ical boundary conditions are therefore given as

0<p<a, u; =d-f(p),
p > a, 01 =0, (7)
p= 07 Op1 = 07

while the electrical boundary conditions are

@ = Py, 8)

{ngém
Op = 07

p>a,
for perfectly conducting indenters, and

p = 07 O = 07 (9)
for perfectly insulating indenters. As indicated in Fig. 2, a and d are
the contact radius and indentation depth respectively.

We can utilize the generalized potential theory method (Chen,
2000; Chen and Ding, 1999; Chen et al., 1999) to solve the above
contact problem. A prominent feature is that we here apply the
modified JKR model to take account of the adhesive effect during
indentation. The full details of derivation are provided in Appen-
dices A.3 (for the conducting case) and A.4 (for the insulating case).

Deformed surface Natural surface

d flo)

Fig. 2. An axisymmetric rigid indenter pressed into an elastic half-space.

Table 1

Shape parameters for three common indenters.
Quantity Flat-ended Conical Spherical
Tn 0 dp1COtR 5n2(2R)71
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Table 2
Analytical contact relations for three axisymmetric conducting indenters.
Quantity Flat-ended Conical Spherical
11 (t) (8224 — 821P0) /A0 822 (d — TitCotp/2 — 831 (o /822) /Ao 822(d— /R - £5100/82) /Ao
o1 (p) 8208100 Va/mk§ L& cotpcosh™" (a/p) NS +2J@
m2Agy/ a2 —p? \/m 27Ay \/W 853 W2RAy
C 2a(gy1 Pg—82d) 2a(Pg8r1 —82d) | a*cotp 2a(, —gpd) | 2a
a,d 21P0—822 0821 ~822 P0821 822 822
pi(a.d) Ao Tho T 25,70 Ao + 37Ack
C — ag 2 cotf ag 4g,,a%
a, o _ gpnaicol o _ 48
pi(a,n) 78,1 Ao Ay Tgy Ay 3MAR
2 204, g: 22100\ 2 2aA, " g1
—2a 821P0\* _ o 82211 —2a 21 _ 2211
(G (1+cot2p) 2 e (1+a2/R?) "
d(a,p§) APy | Qo8 TAoD] | QoS | macoth AL} | gy | a2
1 —2agy, + 82 —2agy, + 82 +73 —2agy, + I3 +3r
d(a,r — 8199 | macotp 100 | a*
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1 V(821 90)~BanAogayn/1+cot’ |V (8100)"-8am2Aggapn /14 /R
822 282
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C — g 42 (281182, 812821 )39 48,8 (281182 —812821)39
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3.2. Adhesive contact of three typical indenters

For three common circular rigid indenters (flat-ended, spherical
and conical), specific results can be obtained by substituting the cor-
responding profile functions into Eqs. (A28), (A38)-(A41),(A50),and
(A54)-(A56).These analytical results are summarized in Tables 2 and
3 forconductingandinsulatingindentersrespectively.Itis noted that
whenthe adhesive effectisremoved, theresults of Zhangetal.(2012)
willberecovered. Inthe text tofollow, we will usetheresultsin Tables
2 and 3 to discuss some particular indentation behaviors during the
adhesive contact between the three typical indenters and the pre-
deformed soft electroactive half-space.

3.2.1. Flat-ended circular punch

For a circular flat-ended punch, the contact relations shown in
the first column of Table 2 or 3 are adhesion-independent. The
effect of adherence force only emerges during the separation of
the probe-sample system as shown in Fig. 3(a). Following Maugis
(2000) but omitting details, we express the adherence force as

2a
L =2a, /-0,
|pad| g“n

a
|p§d| T Ao [\/(gn(ﬂo)z — 8am Ao — 82190 | » (10)

which are the minimal tensile forces (also called as pull-out forces)

to completely detach the punch from the surface of the sample at
the respective critical displacements

\/ —2am’gy,

d = (282) " [\/(gzlfﬂo)z — 8amAogy1 + 82190 |-

dl

cr

3.2.2. Conical punch

For a conical punch as shown in Fig. 3(b), according to
Eqgs. (A45) and (A60), we get the radius of contact induced by adhe-
sion as

Table 3
Analytical contact relations for three axisymmetric insulating indenters.
Quantity Flat-ended Conical Spherical
Xo(t) = 1 (g _ mcotp (g2
Lo &n o d 2 2 d—%
[ n-2g;ld \/EK‘] cotpcosh™" (%) \/gl(', Zm
Va2-p? [a2—p2 + 27gy; fa2—p? + g1 2R
1 2ad 2 3R-1
a.d _ 2ad _ 2ad , da*cotp _ 2ad | 2a°R
IC g g T 2gn g T 37
| — 2
p;(a, —a‘cotf _ 2a 2
e 20 g V1 cotf 5l — 2ay/ - 2n\/1+ a2 /R
i gn
I g pl ] P
d(aph) £ o)+ o+
d(a,n) -

a0 1t\/—2agy /1 + cot? B

@ 7\/—2agy /1 + a2 /R?

(b)

Fig. 3. The adherence of three common axisymmetric indenters: (a) flat-ended; (b) conical; (c) spherical.

2
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32g;,nV/1+cot’p

ap = 12
0 cot?p (12)
for the insulating case, and
2
= _ 32Aon/1 + cot ﬁ+ 4g,,0, (13)

g2,c0t*f gy Cotp’

for the conducting case.

3.2.3. Spherical punch

For a spherical punch as shown in Fig. 3(c), according to Eqs.
(A45) and (A60), we get the radius of contact induced by adhesion
as

aO—FaO—yO:O, (14)
for the insulating case, and
6 2 4 2 ﬁ 2 42 _ 0 15
Qg — 2Y>09 + | V2 R aG—-Y1 =0, (15)
for the conducting case, where
97I2R2g“1’] 97T2R2A07’I 3821RQ,
== eolll y — Yy = . 16
Yo 2 N 285 285 (18)

4. Numerical results and discussion

The exact electroelastic fields in the half-space can be obtained
for specific indenters, and the explicit results are given in Appendix
C. For illustration, we present several numerical examples in this
section. We first check our theoretical solutions in Section 4.1
through comparison with FE simulations in the purely elastic case.
Section 4.2 considers the indentation response of a neo-Hookean
electroactive half-space by a flat-ended punch as well as its rela-
tion to surface instability of the half-space due to pre-
deformation when a particular phenomenon occurs. The mathe-
matical details of the stability analysis are however given in
Appendix D. Then we highlight the validity of the linear exact solu-
tions for the indentation test in Section 4.3 by taking spherical
indentation as an example. The influences of adhesion and the
modification of contact area on the indentation responses for
spherical and conical indenters are studied in Section 4.4. Note that
the traction-free condition is always assumed during all indenta-
tion analysis while the values of shape parameters of the indenters
are essentially chosen according to the common tip size of SPM
probes (Calabri et al., 2008; Li et al., 2008; Pan et al., 2013).

4.1. Verification of the exact solutions

We consider a degenerated model, i.e. the indentation of a com-
pressible neo-Hookean elastic half-space by a circular flat-ended
rigid indenter. The initial shear modulus and Poisson’s ratio are
set to be 1 MPa and 0.3, respectively. In this case, all the analytical
results keep unchanged except that the electric field and the elec-
tromechanical coupling should be discarded (Chen et al., 2010).
The commercial finite element software ABAQUS 2016 is employed
for the purpose of verification. The numerical model comprises of a
total of 11,907 four-node bilinear axisymmetric reduced integra-
tion elements and 12,037 nodes. A denser mesh is designed at or
near the contact region, as shown in Fig. 4(a). We set
A1 = 42 = 1.05 and /3 is determined from the traction-free surface
condition. Also, we denote the total load acting on the punch as p,,
which induces an indentation depth (d). Fig. 4(b) and (c) and 6 dis-
play the distributions of the vertical and radial displacements (nor-
malized by d) at different vertical positions (or depths, normalized
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by a, the radius of the punch), and the comparison between the
theoretical and numerical results indicates a good agreement,
which validates the present mathematical derivations.

4.2. Indentation response of a neo-Hookean electroactive half-space by
a flat-ended punch

Now, consider an electroactive half-space governed by the fol-
lowing neo-Hookean type of energy density function (Huang
et al., 2016)

_ K

oF.p) =L

Jéo

where x = v/(1 — 2v), the constants z, vand & = 8.854 x 10"'2F/m
are the initial shear modulus, Poisson’s ratio and dielectric permit-
tivity in vacuum, respectively, and {; and {, are two dimensionless
electromechanical coupling coefficients. For the special case of
¢ =0 and 2¢, = ¢!, this model reduces to that of the so-called
ideal dielectric elastomer (Zhao and Suo, 2007), where ¢ is the rel-
ative permittivity of the material. We take p = 1.5 MPa in the fol-
lowing calculations if necessary. Also, a dimensionless measure of
Ds is introduced as é = D3 /./[i&.

First of all, we consider a perfectly conducting and grounded
(o =0) circular flat-ended punch indenting an equi-biaxially
pre-stretched SEA half-space with v = 0.3 and ¢ = 1. As in the last
subsection, we have 1; =/, = 4 (but its value can be varied) and
J3 = y is determined according to the traction-free surface condi-
tion. Recall that the surface adhesion energy does not play a role
during the indentation by a flat-ended punch. Fig. 5 displays the
variation of the incremental normal stress (¢,;) at the center of
the contact region with the biasing electric displacement (J) for
varying pre-stretches (/. = 0.55, 1, 1.45 and 1.9). Here the contact
radius and indentation depth are fixed as 25 nm and 0.1 nm,
respectively. For 4= 0.55 and § = 0, the problem reduces to the
case of purely elastic compression. We can see that tensile normal
stress occurs at the center of the contact region, which is quite
abnormal. This unusual response is actually caused by surface
instability of the half-space. The study on this topic can be traced
back to the works of Green and Zerna (1954), Nowinski (1969),
and Usmani and Beatty (1974). Beatty and Usmani (1975) pointed
out that the surface instability could be accurately described by the
vanishing of the normal indentation force and there is no surface
instability of an elastic neo-Hookean half-space when it is under
a state of biaxial tension (/> 1). For the other three pre-
deformed states (i.e. 1 =1, 1.45 and 1.9), the originally compressive
stress for 6 = 0 also becomes tensile once the biasing electric dis-
placement exceeds a critical value. It is clear that the tensile pre-
stretch should not be responsible for this abnormity as noticed
by Beatty and Usmani (1975). It becomes even clearer that the
abnormal variation of stress still shows up when no equi-biaxial
mechanical pre-stretch is applied in the case of 4 = 1. Thus, the
appearance of tensile stress as indicated in Fig. 5 for 1 = 1, 1.45
and 1.9 should be due to the surface instability of the half-space
induced by the increasing applied electric biasing field.

Now we consider the effects of the biasing electric displacement
on the surface instability of the half-space, with the results pre-
sented in Fig. 6, which shows the variations with the electric dis-
placement ¢ of the critical values of the in-plane pre-stretch (i),
the vertical pre-stretch (y.) and the critical volume ratio (J).
The points in the region above the solid curve of A, correspond
to compressive stresses while those below will induce tensile
stresses. Note that the vanishing of incremental normal stress at
the center of contact region is equivalent to the vanishing of inden-
tation force, both corresponding to g,, = 0 (see the related formu-
lae in Table 2). It is seen that the A, — & curve exhibits a particular

07216_])_,’_%(11 _3)+ (éll4+€215)’ (17)
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Fig. 4. Comparison of incremental displacement field obtained by numerical simulation and exact solutions of flat punch indentation: (a) finite element model in ABAQUS

2016; plots of (b) —u,/d and (c) u,/d versus p/a at diverse depths respectively.

nonlinear character - it keeps rising slowly at the beginning, then
goes up sharply, and finally slows down again. The influence of the
electric property of the punch on the critical stretch under different
biasing electric displacements can be checked by comparing Figs. 5
and 6 with Figs. E1 and E2 in Appendix E, the latter two presenting
the parallel results in the case of a perfectly insulating indenter.
We demonstrate in Fig. 7 more explicitly, through the 5, — 4
curve, the correlation between the abnormal phenomenon of the

Tensile

Compressive
-6 4 T L T 5 T y T . T
1.5 2.0 25

)

Fig. 5. Plot of the incremental normal stress () at the center of the contact region
under a perfectly conducting and grounded flat-ended punch with the radius of
25 nm and the indentation depth of 0.1 nm for varying pre-stretches as the function
of the dimensionless electric displacement J.
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appearance of tensile contact stress during the indentation
(Fig. 5) and the surface instability (Fig. 6) of the SEA half-space.
We can see that the curve for the conducting (or insulating) inden-
ter obtained according to the appearance of tensile contact stress
perfectly matches that predicted by the instability analysis of the
half-space with prescribed surface electric potential (or surface
free charge). Thus, it confirms that the abnormal phenomenon of
tensile incremental normal stress in Fig. 5 is due to the loss of sta-

3.0 1

N
(3]
I

Compressive

N
o
1

Tensile

Magnitude
o
1

N
o
1

o
o
1

0.0 T T T T T T T T T T "'H";
0.0

Fig. 6. Plot of the critical in-plane stretch (/. ), the critical vertical stretch (in the z-
direction) (),) and the critical volume ratio (J.;) as the function of the electric
displacement (5) for an SEA half-space indented by a perfectly conducting flat-
ended punch.
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Fig. 7. Comparison between the critical basing field corresponding to zero
incremental normal stress for perfectly conducting (or insulating) indentations
and that for surface instability of a half-space with prescribed surface electric
potential (¢ = 0) (or surface free charge (Dj, = 0)).

bility of the half-space. In particular, the half-space under tension
can even lose its stability when the electric biasing field exceeds a
critical value, regardless of the electric property of the punch. In
Fig. 7, the stable region for prescribed surface electric potential
(¢ =0) is denoted by C while that for prescribed surface free charge
(q = constant) is B + C, and A is the common unstable region for
both cases. It should be noted that a larger stable region indicates
higher stability of the half-space. Thus, the half-space with an insu-
lating surface is more stable than the half-space with its surface
being electrically shorted.

Then, we examine the effects of compressibility and dielectric
property on the instability of the SEA half-space. Fig. 8 presents
the instability curves for the compressible half-space with three
different values of Poisson’s ratio (i.e. v = 0.1, 0.3, 0.49). The results
for the incompressible case (v = 0.5) obtained by Dorfmann and
Ogden (2010a) are reproduced here for comparison. We can see
that the effect of material compressibility on stability is not mono-
tonic when the biasing electric displacement is also involved. For
the case that the applied electric displacement is small
(6 £~ 1.25) or sufficiently large (6 >~ 2.2), the half-space with
larger v will be more unstable. Otherwise (~ 1.25 < § <~ 2.2) the
half-space with smaller v is more susceptible to surface instability.

To investigate the effect of dielectric property on the surface
instability of an SEA half-space, we take polydimethylsiloxane
(PDMS) elastomer, a widely used electroactive elastomer, as an
example. The dielectric property of PDMS elastomer varies with
the type of cross-linker agent in the PDMS solution (Mark, 2009)
and a high permittivity may be obtained by blending the elas-
tomer with other polymers (Carpi et al., 2008b; Molberg et al.,
2010), while the Poisson’s ratio of the elastomer keeps almost
unchanged (~0.5) (Wang and Krause, 1987). Fig. 9 shows the
variation of the critical pre-stretch (/) with the dimensionless
electric displacement of the PDMS half-space with fixed Pois-
son’s ratio (v =0.4999) for different dielectric constants
(e = 2,77, 2.8, 2.98 and 3.69) selected from Mark (2009). The
gray curve (¢ =1) plotted for reference is very similar to the
blue curve in Fig. 8, with only a tiny difference in the value of
v. As compared to the effect of compressibility, the effect of
dielectric constant looks simpler that the PDMS elastomer with
larger permittivity always leads to smaller A, for a fixed biasing
electric displacement. This effect is not obvious when the electric
biasing field is small, while it gets enhanced as the electric dis-
placement increases. Similar observations regarding the effects of

213

International Journal of Solids and Structures 207 (2020) 206-229

3.0
v=0.5
Tension
2.5
2.0
154 v=0.49
1.0 4
0.5
Compression
0.0 g T ! T g T g T ! T ! T
0.0 0:5 1.0 1:5 20 25 30
5

Fig. 8. Plot of the critical stretch (/) versus the dimensionless electric displace-
ment (6) of an SEA half-space under a perfectly conducting flat-ended circular
punch for ¢ = 1 and various values of v.
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Fig. 9. Effect of the dielectric constant on the instability of an SEA half-space.

compressibility and dielectric property can be seen from Figs. E3
and E4 for the indentation by a perfectly insulating circular flat-
ended punch.

4.3. Validity of linear indentation analysis for adhesive spherical
contact

Since the SEA material is hyperelastic while the developed exact
solutions are based on the linear incremental theory, it becomes
very important to clarify under which conditions these solutions
can be used to interpret the indentation responses. In this work,
we assume that if the maximum strain during indentation is below
5%, then the linear indentation analysis is valid. This requirement
can be easily met for the non-adhesive case by choosing proper
penetration depth and indenter size, even at nanoscale. Taking
the spherical indentation as an example, we show in Fig. F2(a) in
Appendix F the variations of the dimensionless contact radius (a/
R) and the incremental normal strain at the center of contact area
(&) with the dimensionless electric displacement (§) for an SEA
half-space under a perfectly conducting spherical punch of differ-
ent sizes (R = 4, 160, 640 um) but with a fixed indentation depth
(4 nm). In this case, as shown in Fig. F1, the maximum
indentation-induced strain is the incremental normal strain at



G. Xia, Y. Huang, Y. Su et al.

the center of the contact area (&,), which decreases with the
increasing electric biasing field. The validity of the linear indenta-
tion analysis holds even when the radius of the indenter is as small
as 4 pm.

However, when the adhesive interaction is introduced for two
nontrivial values of the unit surface adhesion energy (Lu et al.,
2011; Wuet al,, 2011) as shown in Fig. F2(b) and (c), the incremen-
tal deformation becomes much larger than that of the non-
adhesive case, unavoidably beyond the linear elastic regime
(& > 5%). In this case, we may suppress the deformation to some
extent by enlarging the radius of the indenter, which can be man-
ufactured up to 400 um by the MEMS technology (Michatowski
and Luczak, 2018). Nevertheless, increasing the indenter size will
lower the resolution and contrast of the indentation image.
Fig. F2(d) indicates another strategy to keep the linear indentation
analysis valid in a wide range of electric biasing field (from zero to
the nearly critical value of instability) by reducing the surface
adhesion energy per unit area (only 1%. of those in Fig. F2(b) and
(c)). The results presented in Figs. F3-F5 further show that both
a/R and ¢, have a monotonously positive correlation with the mag-
nitude of surface adhesion energy per unit area. It is noted that the
surface adhesion energy can be easily tuned through surface treat-
ment. As for a specific kind of SEA material, its adhesive interaction
with the indenter varies and is affected by the composition of the
indenter and/or surface chemistry of the coating of the probe tip
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(Lin and Horkay, 2008). In fact, proper modifications of the tip
coating to regulate the probe-sample interaction have been repeat-
edly reported (Dos Santos Ferreira et al., 2010; Lei et al., 2018; Yam
et al., 2003).

On the other hand, for spherical indentation, we have used a
parabola to approximate the spherical profile in the analysis, which
requires a small ratio between the indention depth or contact
radius and the radius of indenter (i.e. a small d/R or a/R). For exam-
ple, to keep the deviation of the two profiles (parabolic and spher-
ical) smaller than 1%, d/R should be smaller than 4% or a/R should
be smaller than 20% in the non-adhesive case. The conflict between
the linear incremental model and the intrinsic large deformation
characteristic of soft materials under adhesive contact emerges
as a critical issue. A quantitative understanding of the validity of
the linear indentation analysis for pre-deformed SEA materials is
quite important but still lacking. In this sense, our exact solutions
may help provide certain preliminary knowledge of the testing
conditions under which the linear indentation analysis is
applicable.

For the adhesive indentation test under diverse working condi-
tions, it is interesting and necessary to find the critical value of unit
surface adhesion energy when the incremental normal strain at the
center of the contact area equals 5%. Fig. 10(a)-(c) plot the varia-
tions of the critical surface adhesion energy per unit area for an
SEA half-space with varying dimensionless electric displacement.
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Fig. 10. Effect of the dimensionless electric displacement (J) on the critical value of surface adhesion energy per unit area () of perfectly conducting and grounded spherical
indention of the SEA half-space under varying testing conditions and initial pre-stretches (4): (a) different radii of indenters (R = 4, 40, 160, 640 um) with fixed indentation
depth (d = 4 nm) and pre-stretch (41 = 1.5); (b) different pre-stretches (1 = 1.4, 1.5, 1.6, 1.7) with fixed indentation depth (d = 4 nm) and radius of indenter (R = 4 pm); (c)
different indentation depths (d = 1, 2, 4 nm) and pre-stretches (4 = 1.7, 2) with fixed indenter size (R = 4 um); (d) variations of the non-adhesive dimensionless contact radius
(a/R) and the incremental normal strain (¢,) with dimensionless electric displacement () for different indentation depths (d = 2, 4 nm) where the indenter size (R =4 um) and
the pre-stretch (2 = 2) are fixed. The black solid lines in (d) describe the variations of the contact radius, and the red solid lines in (d) give those of the incremental normal
strain within the linear elastic regime. The red dashed lines correspond to failure of the measurement and the vertical gray line shows the critical value of dimensionless
electric displacement of surface instability. Both critical points are marked by crosses. Similar notations are implied unless stated otherwise.
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The region below the solid curve of 7. corresponds to the case
&, < 5%. The corresponding variations of a/R are provided in
Fig. F6. The solid curves in Fig. 10(a) perfectly include all the crit-
ical points corresponding to &, = 5% in Figs. F2-F5, giving the guid-
ance to choose a proper radius of the spherical indenter for a fixed
indentation depth. As shown in Fig. 10(b), the SEA half-space bear-
ing a larger pre-stretch usually should have a smaller critical unit
surface adhesion energy when the electric biasing field applied is
much smaller than the critical one. For the depth-fixed indenta-
tion, the half-space under a large pre-stretch may not have a crit-
ical surface adhesion energy per unit area until the dimensionless
electric displacement reaches a threshold value (9,-), e.g. the case
of 1 =1.7. The threshold value should not exceed the critical value
of the electric biasing field for surface instability. If this condition is
not satisfied, we can never perform an effective indentation test
within the linear elastic regime, e.g. the case of 1 = 2 as shown in
Fig. 10(d) for d = 4 nm. For these two cases, we can solve this prob-
lem by properly decreasing the indentation depth. Fig. 10(c) shows
that the value of critical surface adhesion energy per unit area is
negatively correlated to the indentation depth. Besides, it always
approaches zero when the half-space is subjected to the critical
electric biasing field of instability.

4.4. More results for spherical and conical indentations

In this subsection, indentations by a spherical punch (R = 4 pm)
and a conical punch (g = 60°) are, respectively, considered with the
indentation depth of 4 nm to show the effect of adhesion on the
indentation responses. The pre-stretch and applied electric dis-
placement of the SEA half-space are fixed as 4; = 4, = 1.5, and
D; =0.01,/goi. The reduced unit adhesion energy

7, =2.8x107°]/m? and %, =1.55x10"*J/m? are adopted to
account for the adhesive interaction during indentation.

We first focus on the perfectly conducting and grounded spher-
ical punch (¢, = 0). As shown in Fig. 11(a), the adhesive effect
makes an obvious difference on the distribution of the incremental
vertical displacement (u,) at the surface (z = 0). The adhesion-free
contact response (black curve) is also presented in the figure for
comparison. For adhesive contact (red and blue curves), the radius
of contact area, which can be identified by the rising part of each
curve, increases with the surface adhesion energy per unit area
for a fixed indentation depth. Furthermore, although the distribu-
tion of the incremental vertical displacement inside the contact
region should comply with the shape of the spherical punch, the
outside distribution is highly affected by the surface adhesion. It
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is also seen that, when the surface adhesion energy decreases,
the surface of the half-space outside the contact area may change
from sinking to heaving.

Fig. 11(b) shows the distributions of the incremental radial dis-
placement (u,) at the surface for different values of the surface
adhesion energy per unit area. The incremental radial displace-
ment is rather small, more than one order of magnitude lower than
the normal or vertical one. For adhesive contact, the distribution of
the radial displacement inside the contact region looks not
straightly correlated to the shape of the punch. This is quite
expected because, in our analysis, we assume zero shear stress
within the contact area though the adhesion energy has been taken
into account. It is noted that the radial displacement first goes
down from zero to negative. As the radial coordinate reaches a crit-
ical value, it turns to grow smoothly. Note that the maximum abso-
lute value of the radial displacements within the contact region has
a positive correlation with the magnitude of the surface adhesion
energy per unit area (). Outside the contact area, the effect of
adhesion on the radial displacement is similar to that on the verti-
cal displacement. As the radial coordinate becomes far away from
the indenter, the incremental radial displacement gradually
approaches zero, also as expected.

The adhesion also affects the distributions of the incremental
stresses and electric displacements. Fig. 12 plots the distributions
of the incremental normal stress (a,;) in the z-direction, the trans-
verse shear stress (), the normal electric displacement (6,,) and
the radial electric displacement (o,3) at the surface for different
values of surface adhesion energy per unit area (7). As is seen from
Fig. 12, the maximum normal compressive stress and normal elec-
tric displacement always occur at the center of the contact region,
of which the magnitudes are both positively correlated to the value
of . 6, has the same order of magnitude as ¢,; and linearly
increases with the radial coordinate in the contact area, whether
the adhesion is involved or not. We note that, as shown in
Fig. 12, the nonzero incremental physical quantities all show a sin-
gular behavior at the contact edge when the surface adhesion
energy is nonzero. It is simply because that the JKR model only
accounts for the adhesive effect inside the contact region (Wu,
2012), leading to a physical discontinuity at the contact edge. To
eliminate these singularities, we may need to utilize the MD model
or take surface tension at the contact edge into consideration
(Karpitschka et al., 2016).

Fig. 13 shows a comparison of the incremental vertical displace-
ment at the surface between the modified JKR model and the tra-
ditional one under different values of the surface adhesion
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Fig. 11. Variations of the surface incremental (a) vertical displacement (u,) and (b) radial displacement (u,,) for an SEA half-space under a perfectly conducting spherical
punch (R = 4 pm, d = 4 nm) for different values of surface adhesion energy per unit area.
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Fig. 12. Variations of the surface incremental (a) normal stress (o;) and transverse shear stress (6,,), and (b) normal electric displacement (o;) and radial electric
displacement (o ,3) for an SEA half-space under a perfectly conducting spherical punch (R = 4 um, d = 40 nm) for different values of surface adhesion energy per unit area.
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Fig. 13. Variations of incremental vertical displacement of an SEA half-space under
a perfectly conducting conical punch (p = 60°) on the surface for different values of
surface adhesion energy per unit area.

energy per unit area (#). For non-adhesive contact, the contact
radius is calculated to be 4.411 nm. When 5 = #,, the contact radii
for the traditional and modified models are calculated to be 4.961
and 5.007 nm, respectively, whereas these are found to be 5.818
and 5.939 nm when # = 1,. Taking the value obtained by the mod-
ified JKR model as a reference, the relative deviations of the con-
ventional model are about 0.92% and 2.04% for n = #, and n =1,
respectively. We further calculate the point-wise incremental ver-
tical displacement at the surface based on the two models. It is
found that the relative deviations of the vertical displacement are
up to 3.63% and 28.85%, respectively, for the two values of surface
adhesion energy per unit area. These two kinds of deviations both
show positive correlation with the magnitude of #. These results
suggest that at least for a sharp-shaped punch (e.g. cone), the tra-
ditional model using the projected area may induce a large error of
the surface displacement, which usually gives plenty of informa-
tion in the indentation techniques. Thus, it becomes clear that
the modified area should be used when the surface adhesion
energy is involved.

5. Conclusions

In conclusion, we presented the exact solutions of 3D elastic
and electric fields in terms of elementary functions for the adhe-
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sive contact between a pre-deformed soft electroactive half-space
and an axisymmetric rigid indenter. The adhesion was considered
by using the modified JKR model. We verified the theoretical solu-
tions through comparison with FE simulations though only for a
purely elastic neo-Hookean half-space. For the indentation of a
compressible neo-Hookean electroactive half-space, the incremen-
tal normal stress may become tensile when the biasing electric dis-
placement exceeds a critical value. This abnormal phenomenon
was shown to be due to the occurrence of surface instability
induced by the electric biasing field.

Numerical results show that the modification of contact area
used in the calculation of surface adhesion energy is necessary at
the micro- and nano-scales even if the adhesive effect is not very
high. For the SEA materials with certain biasing states, in order
to ensure the validity of SPM indentation tests within the linear
elastic framework, the significant effects of electric biasing field
and surface adhesion energy per unit area on the magnitude of
incremental deformation were also carefully analyzed. The analy-
sis provides a strategy to regulate the contact radius, by tuning
the electric biasing field, with a fixed radius of indenter and/or a
fixed indentation depth. As such, we believe that the adhesive con-
tact solutions pave a right way for the nanoindentation technology
or SPM to accurately characterize SEA materials in particular and a
broad range of soft material systems with electromechanical cou-
plings in general.
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Appendix A. A summary of fundamental formulations
A.1. Nonlinear theory of electroelasticity

We here briefly recall the nonlinear theory of electroelasticity
and the incremental field theory proposed by Dorfmann and
Ogden (2010b). Beginning with an SEA body occupying a region
B, with boundary 8B, in the undistorted reference configuration,
we denote a material point in B, by its position vector X. The body
is then subjected to a certain static deformation as well as an elec-
tric displacement field, and as a result, the material point will
move to a new position x such that the body occupies a new region
B with boundary 0B in the current configuration. The overall defor-
mation of the body can be defined via a smooth function x = y(X).
The deformation gradient is then given by F = Grady, where Grad
is the gradient operator in B,, and the volume ratio is | = detF. The
left and right Cauchy-Green tensors associated with F are denoted
by b=FF" and c = F'F, respectively, where the superscript T
denotes transpose operation. We may describe the properties of
the SEA body by introducing an energy density function
Q= Q(F,Dy), satisfying Q(I,0) =0 without loss of generality,
where D; is the electric displacement vector in B.. The nonlinear
constitutive relations are then expressed by

02 02
oF’ oD,’
where the nominal stress tensor T is related to the total Cauchy
stress T through T =JF't, and the nominal electric field

vector is connected with the true one by E, = F'E. For isotropic
materials, we have

T= E = (A1)

Jt=2Q:b+20, (Ilb - b2> 21951 + 2)°QsD @ D
+2Q¢J*(D © bD + bD ® D),

JTji = 2Q1bji + 2Q5 (Libji — bibi) + 2231335 + 2]*QsD;D;
+2Qg)* (DjbDxc + bjDiDy),

E-= 2](941;*11) +QsD + stn),

(A2)

E.=2] (Q;;b,:,-1 D; + Q2sDy + -QGbikDi>7

where i, j, k = 1, 2, 3, Q, =0Q/0l,(m=1,2,...,6), and I; = trc,
I = [(trc)? —tr(¢?)]/2, Is=dete, I,=D,-D, Is=D;-(cD),
Is = D; - (¢2D)) are the six independent invariants. The governing
equations read as

DivT =0, CurlE; =0 DivD, = 0,

(A3)

If there is no electric field outside the SEA body, the natural
boundary conditions are

™m=t,, n-D=q,, nxE=0, (on 0B)

(A4)

where t, and q, are the applied surface traction and the pre-
scribed charge density on 0B.

An infinitesimal deformation x(X) is assumed to be superim-
posed on the finite static deformation x¥ = x(X). Here and below
we follow the notations adopted by Dorfmann and Ogden
(2010Db). In particular, the dotted variables represent the incremen-
tal quantities. The Eulerian forms of equilibrium equations of the
incremental motion are
diVTo = 0, diVD(O = 0,

curlEp = 0, (A5)
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where Ty, Dy and Ejy are “push-forward” version of the incremental
stress, electric displacement, and electric field, respectively. The
incremental constitutive relations read

To = /oH + oDy, Eo=TiH+ KDy, (A6)

where .7, I'y and K are the fourth-, third-, and second-order effec-
tive or instantaneous material tensors, respectively, with the fol-
lowing component forms for an isotropic SEA half-space

Ol 0l
OF;y OF;;

>

m=1,m#4

6 6
> Y Qm
m=1,m#4 n=1,n#4

—— Pln_ |\ — o/
A opigi =] FpuFop < Qm W) = A ogjpis

6 6 6
Al Al Pln | _ 1
FOpzq —Fpa /;q 2 Z an OFyy ng"F Z Qm OF;, 0Dy, _FOIIJQ!
m=1 n=1,n#4 m=5
CAg Ol O, Pl
O
Kopg =JF wF 24 2;19’"" Dy, HD’,],;+ Z Qn m 3D, D'D,/, =Kogp,
m=4 n=:

(A7)

where Q,,, = *Q/(81,01,). The Roman and Greek subscripts corre-
spond to the reference and current configurations, respectively.
H = gradu is the displacement gradient with respect to x, and
u = x(X) = u(x) is the incremental displacement vector. Here and
after, the Einstein summation convention is implied unless other-
wise stated.

Since the effect of the external electric field can be ignored
(Ericksen, 2007; Suo et al., 2008; Zhang et al., 2012), the incremen-
tal boundary conditions are given by

TE" = tho, n-Dyp= dno, nxEg= 0, (A8)

where t4 denotes the incremental mechanical traction and §,, is
the incremental electric charge per unit area on 0B.

A.2. General solution for a pre-deformed SEA body

By introducing an electric potential ¢ and letting E;, = —grado,
the third equation in Eq. (A5) can be satisfied. Then, for an isotropic
SEA material with the finite pre-deformation described in Eq. (1),
we can rewrite the constitutive equations in Eq. (A6) in the new
form of Egs. (2) and (3) (Zhang et al., 2012). The effective material
constants there can be related to the instantaneous material con-
stants in Eq. (A7) as

&1 =1/Ko1, &3 =1/Koss,

eis = —&nlo131, €31 = —&3l 0113, €33 = —&330 0333,

11 = o111 + Loz, €12 = o122 + Fo113€31,

C13 = o133 + T'0113€33,  C33 = 03333 + 0333633,

Csg = 701331 + T'0131€15,  C55 = L1313 + L0131€15,

/03131 + To131€15,  Ce9 = 01221, Co6 = A 01212-

Cgsg

All non-zero material parameters for an isotropic SEA material
are given explicitly in Appendix B.1.

As mentioned in the text, the general solution to the governing
equations (i.e. Egs. (2), (3) and (A5)) can be expressed in terms of
three quasi-harmonic functions ; (i = 1, 2, 3)), which satisfy

82
( 622> lpl ?

where A is the two-dimensional Laplace operator in the p-¢ plane,
and z; = six3 (i=1,2,3), with sy, s, and s; being the roots of the
characteristic equation below

(A10)
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nos® — nys* + nys? —n3 =0, (A11)

where

np= Css(e§3 +C33€33),
ny =c33f(ers +€31)2 +Cgg€11 +C11633) 4 €33[C55C88 — (C13 +C58)2]
+€33[2Css€15 +C11€33 — 2(€15 +€31) (€13 +Cs8)],
Ny =£€11[C11C33 4 C55C88 — (C13 +Css)2] +C55€§1 +C11C55€33
+e15[2C11633 — 213815 — 2(C13 4+ Cs58 — C55)€31 — (2C58 — C55 — C83) €15,
N3 =C11(€35+Cs5€11).
(A12)

The coefficients in Eqs. (4) and (5) are given by
C11€15 — m45,'2 + 5883335,fl
(my —mys?)s;
(A13)

. 2 !
C11€11 — M3S; + Cgg€33S;
(my — mys?)s;

O = ) Oi =

Y1i = %1iC33S; + %2i€33S; — €13, W1 = CggSi + C5801; + €15%2i,

Voi = (011833 — 00;€33)S; — €31, Wa; = Cs8S; + C55001; + €150,

V3i = 2(00iC13 + 02i€31)S; — (C11 + C12), W3 = €15(Si 4 O1i) — €110
(A14)

where

my = &11(C13 +Csg) +€15(€15 +€31),
. . 2
M3 = C11€33 +Cggé11 + (€15 +€31)°,

My = &33(C13 +Cs8) +-€33(€15 +€31),
Mg = C11€33 +Cs3€15 — (C13 +Csg) (€15 +€31),
(A15)

As can be seen, the coefficients in Egs. (4) and (5) are all combi-
nations of the effective material constants in Eq. (A9).

It should be noted that Eqgs. (4) and (5) are valid only when the
characteristic equation has three distinct roots. For cases of equal
roots, the form of the general solution shall be changed accordingly
(Ding et al., 2006). The explicit expressions of s;, s, and s; can be
readily obtained, just as for incompressible materials. It is noted
that the roots may become imaginary, which corresponds to the
situation that the material loses stability (Dorfmann and Ogden,
2010a). In this paper, proper pre-deformations are assumed such
that Re(s;) > 0 always holds.

A.3. Conducting indenters

A.3.1. Potential theory method
For perfectly conducting indenters, we assume:

>

=1

Vi(2) = ) hHj(z), (i=1,2,3) (A16)

where h; (i=1, 2, 3;j =1, 2) are undetermined constants, and

(i=12)
(A17)

27
Hi(p,¢,z) = / /ln (M,N) + Z]o,(N)rdrdo,

with ¢;(N) being the value of stress (for j = 1) or electric displace-
ment (for j = 2) at the position N(r,0,0), an arbitrary point in the
contact region, and R(M,N) is the distance between any position
in the half-space denoted by M(p, ¢,z) and N(r,0,0).

According to the properties of a single-layer potential, its
second derivative satisfies
OH;/02|, o = —2M034,_- (A18)

Then, in conjugation with the third condition in Eq. (7), we may
set
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hiy = —0p(2m) !

i = 0, (j, k= 1, 2) (Alg)

=

where h; then can be obtained from Eq. (A19), and their complicit
expressions are given in Appendix B.2. The vertical displacement
(for k = 1) and the electric potential (for k = 2) within the contact
region can also be written as, in view of Eqs. (A16) and (4)

2n
NO Zgjk/

where Ny(ro, 6p,0) is also an arbitrary point in the contact area, and

3
8k = Z hijou,
i=1

As for the axisymmetric problems, solving Eq. (A20) yields the
incremental normal stress and electric displacement on the
surface as

a
Uzj

0 RNo,

rdrdo, - (k=1,2) (A20)

U.k=1,2) (A21)

1 /C]( ) a XJI(T)
0;(p,9,0) = ) |:\/———p—2 /p ﬁdf , (A22)
where
%(t) = / rxaEdx |t RoEX (A23)
O=) we—e Tk wEoe
with
@1(No) = 821 Bo)ogn Wy (o)
0 ? _ B
@ (No) = E112N0) 2121 (Vo) Ao = 81182 — 8128a1- (A24)
Aoy )

Integrating Eq. (A22) over the contact area gives the total force
(forj = 1) and total charge (for j = 2) applied on the punch as

a 2 [ .
b = -2n [ oy(p.0.00pdp — —Z [ odr  G=1.2)
(A25)
where the superscript C represents the conducting indenter.

A.3.2. Modified JKR model
We define the stress and electric displacement intensity factors

at the contact edge, denoted as K and K5, by

KS =lim [v/27(a = p)oy(p.4,0)] = r” ) (=1 2)
(A26)

The relation of the two intensity factors can be obtained from
Egs. (A23) and (A26) as

KS=—Po__ Bugc A27
2= e e g (A27)
Eq. (A22) can be rewritten as, in view of Eq. (A26),
a K 10 gm
05(p,¢,0) = \/;\/W_ = m (A28)

Following the process of Maugis (2000), the unloading of the
indenter is analogous to a crack problem. For the punch to depart
from the surface, the mechanical energy release rate at the edge of
the contact area (Gy) may be expressed as

Aa

laﬂ(a ~ Ap,§,0)wil(a + Ap, §, 0)dx

G]v[fll Pl



G. Xia, Y. Huang, Y. Su et al.

where Aa is the crack extension. The incremental normal stress
(01), and the incremental displacement discontinuity [w;] in the
vicinity of the contact edge can be asymptotically obtained as

oa(a—Ap,0,0) =

)

2nAp
[wi](a+ Ap,0,0) ~ —4n(gnl<f +gz11<§) \/2z

where Ap is a small quantity. Then, the expression of Gy, is obtained
as

(A30)

Gu = — 5 K (81KT + £20K5). (A31)
or

Ao c( c, &1%Po )
Gy =--—K;|K;7+ . A32
M 2g AoTt/Ta ( )

The equilibrium condition during adhesive contact requires (Lu
et al, 2011)

( N )dSp_O

where 7 is the surface adhesion energy per unit area, S, = na? is the
projected area of the real contact area (S), and we have the ratio
(0S/0Sp) at p =a as

(A33)

oS N

as, =1+ [f (@] (A34)
We then get from Eqs. (A33) and (A34)

Gu =1+ [f@]*. (A35)

Finally, substitution of Eq. (A32) into Eq. (A35) gives the explicit
relation between the stress intensity factor and the modified sur-

face adhesion energy per unit area (11" = n7y/1 + [f’(a)]z) as
Ao e | 81Po )
—Kj (K7 + =", A36
28y ( Ayv/Ta T (A36)
or
Cp— {\/(g ®y)° — 8am?Aog " — 80 P } (A37)
2A07T\/_ 2170 0522 21%0 |-

A.3.3. Indentation analysis
For axisymmetric and conducting indenters, Eq. (A25) may be
rewritten as

pi= (- fe) SB B VE A0
P =22 (d— 520 ) %2 J3 /@@ = p7f (p)dp

To derive the above equation, the following expressions from
Eq. (A23) have been utilized

¥4(6) _ gnd-gny _ gnt t f(p)

! Ao v A39
1, (t) = —812d+811 90 +g12f t f'(p)dp_ ( )
(2 0 Ao Jo m

Especially, substitution of y,(a) into Eq. (A26) yields the depth-
radius relation
Aot/TaKS + 510, N

822

¢ af'(p)dp

/a2 — p? ’
where the expression of K? is given in Eq. (A37). Equation (A38)
may be subsequently rewritten as

d= (A40)
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28y [“ Xf(x (821 00)* —8am2Aogso 1" g21</’0
Ay \/az—z nAga-1
2512 fa Xf'(x _ (2811822 -812821)a9¢ 4 81 (82100 saﬂongzzﬂ
\/0272 TA0g22 TAggxa T
(A41)

Furthermore, for any conducting indenter with its shape
described by Eq. (6), we can derive the explicit load-displacement
relation as follows

Ao
2ag

3+1)

L

@Q’o

+\/_f:

n=1

raa". (A42)

Accordingly, Egs. (A39) and (A41) respectively become

X ( ):% d \/—Z F("H rnan ng ¢07
(A43)
1a(a) = 7g12 (d- \/— a") -4 o Pos
and
oo
C _ _ 2agy nrCG+1 n
P1 = =Tz, nX—:1 (1)) Tnd
\/(221‘,00 2 ~8an?Aog N4 1 annﬂ” 1) ~&2190
=i
nAgaT
(A44)
[o ]
C _ 2ag nr(3+1) n _ (2811822-812821)49¢
p; = VTAg g (n+1)rt) Td TA0g22
\/(&1% —8am?Aggxy [ 1 annﬂ” 1
n=1
+ TAgg2a!

Thus, once the values of p§ and ¢, (or pS), r, surface adhesion
energy per unit area (#7) and related material constants are given,
the contact radius (a) can be determined from Eq. (A44). For
example, for punches with smooth profiles (spherical and conical)

subject to a prescribed electric potential (¢,), setting p$ = 0 gives
the following equation as
oo nI(G+1) n-1
Lo ey % 2nAon (A45)
0 2 1% —-g Z‘X nrE+1) ran ’
1+ (3 nrpai ) VE T S22 4um=1 (nenrgt) o
n=1

from which the radius of contact area induced by adhesion (ag) may
be found.

A.4. Insulating indenters

A.4.1. Potential theory method
For perfectly insulating indenters, the analysis procedure is
quite similar to that presented in Appendix A.3. We now assume

Vi(z) = haHi(z) . (i=1,2,3) (A46)

Then one may obtain, analogous to Eq. (A22), the following
formula

‘1 rd Al
aa(p, $,0) = nz{ \/% \/%dr , (A47)
with
o [T X x wp(x)dx E X2l (x )dx ~ wy(No)
’CO(t)f/o WE—a o xS g
(A48)
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The corresponding stress intensity factor is

Ky =lim [\/27(a = p)oa (p.0.0)] (A49)

_ 1
*m%o(a) )

where the superscript I represents the insulating indenter. Then Eq.
(A47) can be rewritten as

a K1 p(m
G (p.$,0) = ﬁm‘ﬁ \/W (A50)
and the total force is given by
P =2 [ 0a(p.6.0pdp - / Lot (AS1)

A.4.2. Modified JKR model
Correspondingly, the relation between the stress intensity fac-
tor and the modified surface adhesion energy per unit area is

g1 (1% .
—= (k) = (A52)
or
2
K=/ ———p A53
1 ngnn ( )

A.4.3. Indentation analysis
The indentation analysis for an insulating punch is quite similar
to that for a conducting punch although there are some distinc-
tions. Thus, a series of parallel results can be obtained. For an arbi-
trary axisymmetric and insulating indenter, the total load applied
during the indentation is given by
_ 2ad 42

T mgn ﬂgn fo \ pi
_ [_2ap
=—2a 3N “gn fo 1/aZ [,2 p

for which the following two relations have been employed

p}
(A54)

(D) = / (A55)
/ pZ
d=-—my/~2ag,7 + | %. (A56)

With respect to the general profile of the indenter in Eq. (6),
Egs. (A54)-(A56) become

7Tg11

d=— p1+\/—z e raa’, (A57)
2
1 = TE+1)
vo(a) =—(d— VT 2 raat), A58
To(@) gll( ; T(50) ) (A58)
| 20 & nT@E+1)
r,a® —2a
P = g, & it T
x —g—m 1+ ( annanl (A59)
11

For smooth punches, the contact radius due to adhesion (ayp),

can be similarly obtained from the following equation:

2 o 2
rnag} =-2mg,nag,| 1+ () _nrpai) . (A60)
n=1
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Appendix B. Related parameters

B.1. Non-zero components of the effective material tensors

Ao = 245 {Q1 + 23[(2Q11 + Q) +4Q0247 + 225571
F Q2+ 27222205 + 2(Q3 + D22) 72

+Q3/2 4+ 200308 + Q2% + 20937222 + Q330133

Aotz = 4205 [ Q1 + Qo + 201272 + QX + (2Q1y + 23)/2
+ Q25 + 2272(2Q13 + 20y

+2.Q23)v$ + 2Q23)L§ + 933/&}%)],

o133 = 43[Qn1 + Qo + (3Quz + 3)42 + (Qu3 + 2Q99) 25 + Q308
+ Q1272 4 (Quz + 2Q50) 4272 + 30932172 + 2337572
+4D2 372751 {3 73(Qs5 + 2Q36/2)
+2823[Q1s + 2Q1672 + (Qas + 220673) (22 4+ 22)]3,
/3333 = 2A3);2{Q1 +2!22/1f + Qgﬂ;l +2/L§ [Q]l +4Q12/€
121 (2Q13 +4Q0 +4Q037% 4+ Q330 +2D3 02051 {4Q3578 05
+7218Q36/305 + Q575 + 274222015 +3Q6 +4Q0572 + 41672

+8Q67272)|} +4D328 13 [Qs5 + 472 (Qs6 + Q66.42)],

2

2 2/ ,
Ao1212 = Z(Q] + 92/@)7 01221 = *T;(QZ + Q3A§),

2 L)
Aoz = A (Q1 + Q02 + D3Q6233),

2 .
01331 = *2)&3(92 + le% — D3QGA‘11),
13131 = {Q] + QZ/L] + D3/L1[Q5 + QG(/Ll +22 )”7 (Bl)
“1
4Dy 74 ,
Iz = ,133 L{Qg + Qa(22 + 23) + 2[5 + Q3472 + Q1623
+(Qa6 + Q35)7223 + Qo3 + Q362275 + Qo5 (22 + 23)]},
Foi31 = 2D37373[Qs + Q6(/7 + 23)],
Tos33 = 4D3/273{ Q14 + Q5 + 2Q2472 + Q3477
+(15 + 296)@ + Qo3 + 12 22(2Q05 + 2Q267% + Q3572
+Q36/272) + D304 [Qus + (2946 + Qs5)/3
+3QSG/L§ -+ 2Q66}~3}}7 (BZ)
Koir = 223(Qq + Q572 + Q677),
9424-1 2 2 2,4 2
1(033 = 2/L.<1 A3 {94 + 23 (.Qs + 9513) -+ 2D3ll [944 + 2945}.3 (B3)
475246 + Qs5 + 2Q567% + Q6673)]},
where o111 — Ao1122 = “o1212 + Fo1221-
B.2. Expressions of h;
hi; = V23 W12 +Y2, W13
N = 030020 70 P12) 2 (130172 0131 (3012 12013)) °
— Y2311 72113
ha 27(713 (V22 @11 V21 T12)+712(= V23 P11 721 T13) 4011 (Y23 P12 =722 @13)) (B4)
—V22T11 1721 P12
hs1 270(y13 (P22 @11 =Y21T12)+712 (=723 @11 +721 D13) 71 (V23 T12— 722 @13))
hyy = M13T12=712T13
12 = 20130 @1 =721 912) 12 (V23O H 721 013) 4711 023012722 @13)) *
“Y13T11 %13
hz, = 27013 (P22 @11 =721 T12)+712 (= V23 P11 4721 D13) 71 (V23 D12 722 T13)) (B5)
h32 = o Y1211 - Y11 P12
(V1

3(V22 @11 =721 @12)+712 (= V23 T114V21 T13)+711 (V23 T12— V22 T13))
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Appendix C. Exact solutions for three typical indenters

Following Fabrikant (1989), Fabrikant (1991), we substitute
Eq. (A22) into Eq. (A17) and obtain

1 2n pa
Hj(pvl/,vz) :ﬁ/o /0 H(P:Wﬂ% r07¢0)wJ(N0)r0dr0d¢O7 (Cl)
where
H(p, . Z:To, ¢o) = —R ™" (M, No)tan™" [hR™" (M, No)]
@ —13) Inf(a+ /a2 ~ )L
H@ - ) (- 1) Han /a2 — P(c - 1) Fa ]
H@ - ) -1 Ctan @ - B -1) Ca Y,
(C2)
and
_ P w0 7P piti-d0)
C =—¢ 0 ) =—¢€ o', C3
Po ’ Po ©)
The following simple notations are also adopted:
heh(p,a,z) =3 {\/(p+a)2 +2 - \/(p -a)’ +zz},
L2L(p,a,2) :%N(pm)z 422 +\/(p—a)2+22}, (C4)

hi=1(p,a,z),

hi=hL(p.a,z)

Then, the explicit expressions of 3D adhesive contact solutions
for a soft electroactive half-space can be obtained, which are given
below.

C.1. Circular flat-ended punch

(1) Conducting case:

i = K |zisin ™! (lg) —y/@-F +aln <12i +/B - pzﬂ, (C5)
2i
where k§; = 2v/may_?  h;K;. Thus
3. a—y/a2- P,
Uy = K§— U, = Zcxhxhsm 1<£>,
p 1Y Ly
3 c . a(a
¢ = ayKSsin <E>, (C6)
i=1 !
Va2 —E ek
0721 = Z’))]IKII lz l ,022 = Z ))21le lz lz )
1~ "2i 1
Va2 —E;
03 = Z /31K11 2 2] s (C7)
hi— by
3 I 2 _ P 3 Liy/p? — B
o= > kG 6y = 3wk
io1 p(lli - lz:‘) i=1 p(ln‘ - lz:‘)
3 Liy/p? - B,
Op3 = ngﬂcfl — Ly (C8)
i=1 (ln - 121')
(2) Insulating case:
¥ = ;| zisin ™! (g) —ya—L +aln <12i +4/B; - pzﬂ, (C9)
1

where «!; = 2/7tah; K},. Thus

221

International Journal of Solids and Structures 207 (2020) 206-229

,/ _P 3
1i [ .-1(a

u, = E Klr Z:E 041iK7;S1N <—>,
i=1

121

_ s 1 (&
Q= ;az,ichsm <12i>, (C10)
2 2
\/ a2 a2 =13
0z = Z/n’cu ) 2 ) Z/z:"n 77
l]l 121 l]l - l
/ 12
03 = Z /31K11 lz lz ’ (Cll)
1
Liy/p? - 3 Liy/p? — I,
Gy = Zwmcl, O =Y
P(l i~ lzi) i=1 p(lli - lz:‘)
1/ p? — lzi
Ops = ngmh > (C12)
P(l 1 — b
C.2. Conical punch
(1) Conducting case:
Y = kSl zisin ™ (&) — \/@® — [, + aln(ly + \/ I, — p?)]
+r@lazsin”! (L) + (202 + p? = 22)In(ly + /15 - p?)
‘ (€13)
(221, a2— 2.
7%21. /pz T Z,-Z T 3hi(p il;}:i\/ hi
2 0+ /p? + 2)),
where  k§! =2ymay>; hyK;  and  k$ =37 hyT;,  with

T} = g,c0tB/Ao, and TS = —(g5,/8,)T5. Thus

u, _ZKUG \/a ’1,+K§ \/P ?+2]  (Pi2a) \/Bi—p?

202
~8In(zi+ /2 +22) + Gl /B - )],
u, = g oy {KS!sin ™! (f) +K$? [\/l;ij - \//T—irle— asin”' (£)
+ziln(z; + W) —ziln(ly + \/ﬁ)]}7
o= éaz,-{xgg sin”' (i) +KS2[\/ 15 —a? — \/p—ziz‘f+ asin™ (£)

+ain@ +/p+20) - zin(la-+ /B - p2)),

(C14)

— K@ In(Li+1/ 15— p2) —In(zi+/p2 + 2]},
— K@ (i +1/1;— p2) —In(zi+/p2 + 2]},
— K@i +1/ 15— p2) —In(zi+/p2 + 2]},

(C15)

2
a
T2

\/a l1X

3
021 = Z}Vli{Kgil
=

3 2 2

a1 Ve-hi

O =2 VaulK5 L E X
iz i~hi

\/ a2 llx

053 = Z Vil K51 A
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hi/p /a2~ /,2+Zz
Op1 = th (15! = e KS? )

12 12

hiy/ P21 V-2
Tpn = zwzl{xgz s iy g Yy (C16)
2
o5 = 33wl S
i=1
(2) Insulating case:
yi = Klzsin () — /a2 — b+ aln(li + /b — p?)
+Klazisin ! () + 1 (2@ + p? - 22)In(Li + \/; - p?)
’ (C17)

3., [ . 2, 3hip?-28)\/a-F
_4_121 p2 +Zi + #
2272
2 n(z 4+ \/p? + 22)),

where Kl = 2y/mah; K} and k% = hy T}, with T) = cotf/g;;. Thus

2 2 5
11 a- \/ B 12 \/P % ﬂlm 2aky;) \/ bi—p a?
u, = Z K5 + K3il— 27 + 2

—5InG +\/p? +2) + §In(li+ /By~ p?)),
3
u, = ; oyi{risin™! (g) + KB/ - — \/p? + 22 +asin”' ()
+zin(z + 1/ p? + 22) — ziln(Li + 1/ ; — p?)]},
3
@ =Y o {isin! (&) KB/ B — @ —\/p? + 22 +asin ™' ()

i=1

+2in(z -+ \/p? +2) — zin(bi + /B - p)]}

=

021—2/11{K21 ,2 12

N

0= Z’))ZI{KZl ,2 12

TE

03 = Z’Y3I{K2! ,2 12

(C18)

KZ[n(bi+ /B — p?) = In(zi +/ p? +22)]},
K2[n(Li+1/ ;- p?) —In(zi+/ p? +22)]},
KE[In(bi /B — p?) —In(zi +/ p? +22)]}.

(C19)

3 i/ p?-1; Va2 /p2+sz

0-/71 = ZWU[KIZII : 12 12 1 + KIZZI ]
i=1
3 hiv/ P?-E; VEBi—a2—/p2+2

0,02 = Zwm[KIzl, lp lz 12 1 122, 2 P }7 (CZO)
i1
3 l i/ i V lzi7u27 V [)2+Zi2

Gp3 = ng,[K?I lp(lz 12 1 —+ KIZZI 2 5 }
i=1

C.3. Spherical punch

(1) Conducting case:
v = K} [z,-sin’l(é) — /@ = B, + aln(ly + /5, — p?)]
+KQ(zi(2a? - p? +322)sin 7' (8) + d@In(l + /B - p2)  (C21)

+%(5p2 - l3_0a2 - 2151 - _ﬁz) \/ a — ﬁi]?

where  k§! =2y7may} hgK  and kS =327 hyT{,  with
T{ = 82/(TRA) and T; = —(51/85,)T1. Thus
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a- \/ i 2 12.+2a
Up—ZKU -k +ZKCZP[ a — lli(‘l*];;,za)
-1
+3p2 — z;sin (&)],

u, = E o {K§!sin™! (ﬁ) + KP[(2a% + 222 — p?)sin” (&)

i=1 (sz)
2a —31 /l _a ]}
Clein~! (a 2 2 2 2\ein~! (4
2}0(2,{1(?31 sin (E) + Kk§?[(2a% + 272 — p?)sin <E>
1
_ 2a%- 31 /I az]}
3 /d
021 =3 Vi KS z 12 i +4K5; [zisin ](ﬁ> - @ - L},
i=1
3 NI .
02 =3 VK5 ,g,,,;,lh +4KG[zsin”! (é) —y/@ - L]}, (€23)
i=1 i~
3 NI .
05 = Ly (KS] gt + 4 lmsin ' (i) — /a2 — L]}
i— i
L x\/ i a mn- a
Op1 = Ew],{xm . (12 12 )1 + ZK P[g \ l;:‘ — @ —sin 1<E)}}7
0 = YOl S 2l B - @ - sin ()1,
3 hir/p2 - .
01 = Yol 22 plg \JB @ —sin” ().
i=1 1
(C24)
(2) Insulating case:
Ui = Kllfzisin ' (&) — /a2 — B + aln(ly + /B, - p?)]
+K2(zi(2a* - p? +322)sin ' () + 4 @In(ly + \/I; — p?) (C25)

+1(5p% - - 26, - 1)y /a2 - [},

where Kkl = 2\/7'5ah,-11('1 and 2 = hy T}, with T, = 1/(nRg;,). Thus
2
R g (153
+% —zsin™! (é)],

3
u, = o {Kisin' (&) + K2[(2a® 4 222 — p?)sin”’ <%)

i= (C26)
2 32,
—H G - e,
> ein~1(a 12 2 2 2\cin~!(a
Q= EaZi{K3i51n (E) + K%[(2a + 222 — p?)sin (E)
2a —31 /l _ az]}
O —zmxg, Ve ailzsin () - \Ja2 - By,
azz—ml{xg, VL alzsin (¢) - Je - Rl (@)

03 = ZV&{K& 12 ,2 1’ +4K [Z,Sll‘l l(ﬁ) Y. (12 - l%i}}v
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1 hiv 1)2*111
Z il 27

1 hiy/p? ’llx

T,y = . L
=30l )

l]l \/ 11
p(ti 12 )

+2K% p[l2 /5 —a? —sin”’ (l%)}}v
+ 25 plg /I — a2 —sin ™! ()11,
+ 2Kl \/lgifazfsin’l(,g—i)}}.

Op1 =

Z w-31{K11

Op3 =

(C28)

Appendix D. Surface instability of a half-space

We investigate the surface instability of a pre-deformed half-
space by following Dorfmann and Ogden (2010a). We look for
incremental two-dimensional solutions such that
(U1, u3) = (iA, B)e ksseikxi  y, — 0, ¢ = Cekoseikn (D1)
where k is the positive ‘wavenumber’ of disturbance and Re(s) > 0 is
required to satisfy the decay condition at infinity. Then, substitution

of Eq. (D1) into the incremental governing equations leads to
(SZC33 — C11)A —S(C13 + ¢s8)B —s(ey5 +€31)C =0,
S(C13 + ng)A + (C3352 - C55)B + (93352 - 615)C =0,
s(e1s + e31)A + (e338% — e15)B — (&338* —£11)C =0,

(D2)

whose determinant must vanish for non-trivial solutions to exist.
Thus, Eq. (D1) is transformed, with the zero component omitted,
into

3 _
u] Ll3 Z lA,,B —ks,-x3e1kx1>
i=1

>

i=1

Cie—ksixg eik)q7 (D3)

(p:

where the constants A;, B; and C; are connected by any two equa-
tions of Eq. (D2) such as

{

where there is no summation over i.
The mechanical boundary conditions of Eq. (4); specialize to

(SizCss - Cn)Ai — Si(C13 + C58)Bi — si(e1s +e31)Ci =0,

D4
Si(C13 + Csg)Ai + (3357 — Cs5)Bi + (€338 — €15)Ci = 0, (D4)

Tos1 = 0,Tos3 = 0. (D5)
By using Eq. (D3), we rewrite Eq. (D5) into
3
>_ —SiCssAi + CssB; + €15Ci = 0,
= (D6)

3
Z C13A; + SiC33B; + sie33C; = 0.
i=1
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Correspondingly, the electric boundary conditions in Egs. (4),
and (4)s reduce to

Dig3 = 0,Ep01 = 0. (D7)
and, equivalently, to
263]14 + siessB; — 5;833C; =0 Zc =0, (D8)

i=1

at x3 = 0.

In this paper, we carefully distinguish these two cases, which
correspond to the prescribed surface free charge (q) and the pre-
scribed electric potential (¢), respectively. To obtain non-trivial
solutions, the determinant of coefficients satisfies the following
bifurcation equation:

Ai O 0 Ay O 0 Az O 0

0 Ap O 0 Ay O 0 Ay O

0 0 Az O 0 A O 0 Aszg

Ay O 0 Ay O 0 Ay O 0

0 A5, O 0 Ass O 0 Ass 0 |=0, (D9)
0 0 Ass O 0 Ass O 0 Asg

An An Az Ay A A Ay A Agg

Agi Agy Ags Agy Ags Ass Asr Ass Aso

Agr Agy Aoz Ags Ags Ags A9 Agg Agg

where (i=1, 2, 3)

Aii = stcss — C11, Aiiiz) = —Si(C13 + Css), Aiirey = —Si(€15 + €31),

Ais3)i = Si(C13 +Cs8), Air3)i43) = 5?C33 — Cs5, Ai13)(i+6) = ‘3335,~2 — €15,
(D10)

A7 = —SiCgs, Aziy3) = Css, Aziis6) = €15,

Agi = C13, Agi13) = SiC33, Agire) = Si€33,
(D11)

and

Agi = €31, Agi13) = Si€s3, Agiire) = —Si€s3, (D12)

for Dyg3 = 0, while

Agi = Ag(i13) =0, Agiive) = 1, (D13)

for E; = 0.



G. Xia, Y. Huang, Y. Su et al.

Appendix E. Corresponding results for a perfectly insulating
flat-ended indenter

-6 ! T ! T ! T : T ' T
2.5

Fig. E1. Variations with the dimensionless electric displacement 6 of the incre-
mental normal stress at the center of the contact region under a perfectly insulating
flat-ended punch.
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Fig. E2. Variations with the dimensionless electric displacement of the critical pre-
stretch and volume ratio corresponding to zero incremental normal stress at the
center of the contact area under a perfectly insulating flat-ended punch.
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)
Fig. E3. Variations of the critical stretch /i, with the dimensionless electric

displacement ¢ for an SEA half-space under a perfectly insulating flat-ended punch
for £ = 1 and various values of v.
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Fig. E4. Variations of the critical stretch /i, with the dimensionless electric
displacement ¢ for an SEA half-space under a perfectly insulating flat-ended circular
punch for various values of ¢.

Appendix F

Supplementary results for the validity analysis of linear theory.
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Fig. F1. Three-dimensional distributions of all the nonzero incremental strains for an SEA half-space under a perfectly conducting spherical punch (R =4 pum, d = 0.1 nm) with
nearly zero dimensionless electric displacement (6 = 0.00001) and no adhesion: (a) incremental normal strain (¢;); (b) incremental radial strain (¢,); (c) incremental
circumferential strain (&,); (d) incremental shearing strain (&,,). Note that the contact radius in this case is 20 nm.
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Fig. F2. Variations of the dimensionless contact radius (a/R) and the incremental normal strain at the center of contact area (&,) with the dimensionless electric displacement
(6) for an SEA half-space under a perfectly conducting spherical punch of different sizes (R = 4, 160, 640 um) for various values of surface adhesion energy per unit area: (a)
Adhesion-free (17 = 0 J/m?); (b) 5 = 0.028 J/m?; (c) n = 0.155 J/m?; (d) effects of the dimensionless electric biasing field and the weak adhesion on the dimensionless contact
radius when the radius of the indenter and the indentation depth are 4 um and 4 nm respectively.
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Fig. F3. Variations of the dimensionless contact radius (a/R) and the incremental normal strain (¢,) with the adhesion energy per unit area (#) for a pre-stretched SEA half-
space (4 = 1.5) under a perfectly conducting spherical punch of radius 4 pm when the indentation depth is 4 nm: (a) 6 = 0.00001; (b) 6 = 0.01; (c) 6 = 0.1; (d) 6 = 1.
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Fig. F4. Variations of the dimensionless contact radius (a/R) and the incremental normal strain (¢;) with the adhesion energy per unit area (#) for a pre-stretched SEA half-
space (4 = 1.5) under a perfectly conducting spherical punch of radius 160 pm when the indentation depth is 4 nm: (a) 6 = 0.00001; (b) 6 = 0.01; (c) 6 = 0.1; (d) 6 = 1.
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Fig. F5. Variations of the dimensionless contact radius (a/R) and the incremental normal strain (¢;) with the adhesion energy per unit area (#) for a pre-stretched SEA half-
space (4 = 1.5) under a perfectly conducting spherical punch of radius 640 pm when the indentation depth is 640 nm: (a) 6 = 0.00001; (b) 6 = 0.01; (c) 6 = 0.1; (d) 6 = 1.
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Fig. F6. Variations of a/R for the contact between an SEA half-space and a perfectly conducting and grounded spherical indenter for varying testing conditions and initial pre-stretch
(2): (a) different radii of indenters (R = 4, 40, 160, 640 um) with fixed indentation depth (d = 4 nm) and pre-stretch (4 = 1.5); (b) different pre-stretches (1= 1.4, 1.5, 1.6, 1.7) with fixed
indentation depth (d = 4 nm) and radius of indenter (R = 4 um); (c) different indentation depths (d = 1, 2, 4 nm) and pre-stretches (4 = 1.7, 2) with fixed indenter size (R = 4 um).

227



G. Xia, Y. Huang, Y. Su et al.

References

Akbari, S., Rosset, S., Shea, H.R., 2013. Improved electromechanical behavior in
castable dielectric elastomer actuators. Appl. Phys. Lett. 102, (7) 071906.

Arora, S., Ghosh, T., Muth, J., 2007. Dielectric elastomer based prototype fiber
actuators. Sens. Actuators A Phys. 136 (1), 321-328.

Azzez, K., Chaabane, M., Abellan, M.-A., Bergheau, J.-M., Zahouani, H., Dogui, A.,
2018. Relevance of indentation test to characterize soft biological tissue:
application to human skin. Int. J. Appl. Mech. 10 (7), 1850074.

Bar-Cohen, Y. (Ed.), 2004. Electroactive Polymer (EAP) Actuators as Artificial
Muscles: Reality, Potential, and Challenges. second ed. SPIE press, Bellingham.

Bauer, S., Bauer-Gogonea, S., Graz, I., Kaltenbrunner, M., Keplinger, C., Schwodiauer,
R., 2014. 25th anniversary article: a soft future: from robots and sensor skin to
energy harvesters. Adv. Mater. 26 (1), 149-162.

Beatty, M.F., Usmani, S.A., 1975. On the indentation of a highly elastic half-space. Q.
J. Mech. Appl. Math. 28 (1), 47-62.

Bonilla, M.R,, Stokes, J.R., Gidley, M.J., Yakubov, G.E., 2015. Interpreting atomic force
microscopy nanoindentation of hierarchical biological materials using multi-
regime analysis. Soft Matter 11 (7), 1281-1292.

Brochu, P., Pei, Q., 2010. Advances in dielectric elastomers for actuators and artificial
muscles. Macromol. Rapid Commun. 31 (1), 10-36.

Calabri, L., Pugno, N., Menozzi, C., Valeri, S., 2008. AFM nanoindentation: tip shape
and tip radius of curvature effect on the hardness measurement. J. Phys.
Condens. Matter 20, 474208.

Cao, Y., Yang, D., Soboyejoy, W., 2005. Nanoindentation method for determining the
initial contact and adhesion characteristics of soft polydimethylsiloxane. J.
Mater. Res. 20 (8), 2004-2011.

Carpi, F., De Rossi, D. 2004. Dielectric elastomer cylindrical actuators:
electromechanical modelling and experimental evaluation. Mater. Sci. Eng. C
24 (4), 555-562.

Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, RE., Sommer-Larsen, P., 2008a.
Dielectric Elastomers as Electromechanical Transducers: Fundamentals,
Materials, Devices, Models and Applications of an Emerging Electroactive
Polymer Technology. Elsevier, Amsterdam.

Carpi, F., Gallone, G., Galantini, F., De Rossi, D., 2008b. Siliconepoly(hexylthiophene)
blends as elastomers with enhanced electromechanical transduction properties.
Adv. Funct. Mater. 18, 235-241.

Chen, W.Q., 2000. On piezoelastic contact problem for a smooth punch. Int. J. Solids
Struct. 37 (16), 2331-2340.

Chen, W.Q., 2009. Adhesive contact between a rigid punch and a piezoelectric half-
space. In: Yang, W., Feng, X.Q., Qin, Q.H. (Eds.), Advances in Damage, Fracture
and Nanomechanics. Tsinghua University Press, Beijing, pp. 58-65 (in Chinese).

Chen, W.Q., 2015. Some recent advances in 3D crack and contact analysis of elastic
solids with transverse isotropy and multi-field coupling. Acta Mech. Sin. 31 (5),
601-626.

Chen, W.Q., Ding, HJ., 1999. Indentation of a transversely isotropic piezoelectric
half-space by a rigid sphere. Acta Mech. Solida Sin. 12 (2), 114-120.

Chen, W.Q., Ding, H.J., 2004. Potential theory method for 3D crack and contact
problems of multi-field coupled media: a survey. J. Zhejiang Univ. (Science) 5
(9), 1009-1021.

Chen, W.Q., Pan, E.N., Wang, H.M., Zhang, C.Z., 2010. Theory of indentation on
multiferroic composite materials. J. Mech. Phys. Solids 58 (10), 1524-1551.
Chen, W.Q., Shioya, T., Ding, H.J., 1999. The elasto-electric field for a rigid conical
punch on a transversely isotropic piezoelectric half-space. J. Appl. Mech. 66 (3),

764-771.

Chen, Z.R., Yu, S.W., 2005. Micro-scale adhesive contact of a spherical rigid punch on
a piezoelectric half-space. Comp. Sci. Tech. 65 (9), 1372-1381.

Choi, Y., Van Vliet, KJ., Li, J., Suresh, S., 2003. Size effects on the onset of plastic
deformation during nanoindentation of thin films and patterned lines. J. Appl.
Phys. 94 (9), 6050-6058.

Dagro, A.M., Ramesh, K.T., 2019. Nonlinear contact mechanics for the indentation of
hyperelastic cylindrical bodies. Mech. Soft Mater. 1, 7.

Derjaguin, B.V., Muller, V.M., Toporov, Y.P., 1975. Effect of contact deformations on
the adhesion of particles. ]. Colloid Interface Sci. 53 (2), 314-326.

Ding, HJ., Chen, W.Q.,, Zhang, L.C, 2006. Elasticity of Transversely Isotropic
Materials. Springer, Dordrecht.

Dorfmann, A., Ogden, RW., 2010a. Electroelastic waves in a finitely deformed
electroactive material. IMA ]. Appl. Math. 75 (4), 603-636.

Dorfmann, A., Ogden, RW., 2010b. Nonlinear electroelastostatics: Incremental
equations and stability. Int. J. Eng. Sci. 48 (1), 1-14.

Dorfmann, L., Ogden, RW., 2014. Instabilities of an electroelastic plate. Int. ]. Eng.
Sci. 77, 79-101.

Dos Santos Ferreira, O., Gelinck, E., de Graaf, D., Fischer, H., 2010. Adhesion
experiments using an AFM—Parameters of influence. Appl. Surf. Sci. 257 (1), 48—
55.

Ebenstein, D.M., Pruitt, L.A., 2006. Nanoindentation of biological materials. Nano
Today 1 (3), 26-33.

Ericksen, ].L., 2007. Theory of elastic dielectrics revisited. Arch. Rational Mech. Anal.
183 (2), 299-313.

Fabrikant, V.I., 1989. Applications of Potential Theory in Mechanics: A Selection of
New Results. Kluwer Academic Publishers, Dordrecht, Boston.

Fabrikant, V.I., 1991. Mixed Boundary Value Problems of Potential Theory and Their
Applications in Engineering. Kluwer Academic Publishers, Dordrecht, Boston.

Getz, R,, Kochmann, D.M., Shmuel, G., 2017. Voltage-controlled complete stopbands
in two-dimensional soft dielectrics. Int. J. Solids Struct. 113, 24-36.

228

International Journal of Solids and Structures 207 (2020) 206-229

Giannakopoulos, A.E., Suresh, S., 1999. Theory of indentation of piezoelectric
materials. Acta Mater. 47 (7), 2153-2164.

Green, A.E., Rivlin, R.S,, Shield, R.T., Goldsbrough, G.R., 1952. General theory of small
elastic deformations superposed on finite elastic deformations. Proc. R. Soc.
Lond. A 211 (1104), 128-154.

Green, A.E., Zerna, W., 1954. Theoretical Elasticity. University Press, Oxford.

Gupta, S., Carrillo, F., Li, C., Pruitt, L., Puttlitz, C., 2007. Adhesive forces significantly
affect elastic modulus determination of soft polymeric materials in
nanoindentation. Mater. Lett. 61 (2), 448-451.

Hertz, H.R., 1881. Uber die Beriihrung fester elastischer Kérper. J. Reine. Angew.
Math. 92, 156-171.

Huang, Y.L, Xia, G.Z., Zhou, W ]., Chen, W.Q., 2016. On the Green’s functions for a
two-phase soft electroactive medium subjected to biasing fields. Eng. Anal.
Bound. Elem. 64, 137-149.

Johnson, K.L., Kendall, K., Roberts, A.D., 1971. Surface energy and the contact of
elastic solids. Proc. R. Soc. Lond. A 324, 301-313.

Kalinin, S.V., Karapetian, E., Kachanov, M., 2004. Nanoelectromechanics of
piezoresponse force microscopy. Phys. Rev. B 70, (18) 184101.

Kalinin, S.V., Rodriguez, B]., Jesse, S., Karapetian, E., Mirman, B., Eliseev, E.A.
Morozovska, A.N. 2007. Nanoscale electromechanics of ferroelectric and
biological systems: a new dimension in scanning probe microscopy. Annu.
Rev. Mater. Res. 37 (1), 189-238.

Karapetian, E., Kachanov, M., Kalinin, S.V., 2005. Nanoelectromechanics of
piezoelectric indentation and applications to scanning probe microscopies of
ferroelectric materials. Phil. Mag. 85 (10), 1017-1051.

Karapetian, E., Kachanov, M., Kalinin, S.V., 2009. Stiffness relations for piezoelectric
indentation of flat and non-flat punches of arbitrary planform: applications to
probing nanoelectromechanical properties of materials. J. Mech. Phys. Solids 57
(4), 673-688.

Karpitschka, S., van Wijngaarden, L., Snoeijer, ].H., 2016. Surface tension regularizes
the crack singularity of adhesion. Soft Matter 12 (19), 4463-4471.

Kofod, G., Sommer-Larsen, P., Kornbluh, R., Pelrine, R., 2003. Actuation response of
polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14 (12), 787-793.

Kolluru, P.V., Eaton, M.D., Collinson, D.W., Cheng, X., Delgado, D.E., Shull, K.R,,
Brinson, L.C., 2018. AFM-based dynamic scanning indentation (DSI) method for
fast, high-resolution spatial mapping of local viscoelastic properties in soft
materials. Macromol. 51 (21), 8964-8978.

Lei, H., Cheng, N., Zhao, ]., 2018. Interaction between membrane and organic
compounds studied by atomic force microscopy with a tip modification. J.
Membrane Sci. 556, 178-184.

Li, J., Li, J.-F., Yu, Q., Chen, Q.N., Xie, S., 2015. Strain-based scanning probe
microscopies for functional materials, biological structures, and
electrochemical systems. J. Materiomics 1 (1), 3-21.

Li, J., Liu, L, Liu, Y., Leng, J., 2019. Dielectric elastomer spring-roll bending actuators:
applications in soft robotics and design. Soft Robotics 6 (1), 69-81.

Li, Q.S., Lee, G.Y.H., Ong, C.N., Lim, C.T., 2008. AFM indentation study of breast cancer
cells. Biochem. Biophys. Res. Commun. 374, 609-613.

Lin, D.C., Horkay, F., 2008. Nanomechanics of polymer gels and biological tissues: A
critical review of analytical approaches in the Hertzian regime and beyond. Soft
Matter 4, 669-682.

Linnebach, P., Simone, F. Rizzello, G. Seelecke, S. 2019. Development,
manufacturing, and validation of a dielectric elastomer membrane actuator-
driven contactor. J. Intell. Mater. Syst. Struct. 30 (4), 636-648.

Liu, Y., Zhang, Y., Chow, M.-]., Chen, Q.N., Li, J., 2012. Biological ferroelectricity
uncovered in aortic walls by piezoresponse force microscopy. Phys. Rev. Lett.
108, (7) 078103.

Lowe, C., Zhang, X., Kovacs, G., 2005. Dielectric elastomers in actuator technology.
Adv. Eng. Mater. 7 (5), 361-367.

Lu, P., Foo, Y.L, Shen, L., Cheong, D.W.C.,, O'Shea, S.J., 2011. A general relation for
contact stiffness including adhesion in indentation analysis. J. Mater. Res. 26
(11), 1406-1413.

Luria, J., Kutes, Y., Moore, A., Zhang, L.H., Stach, E.A., Huey, B.D., 2016. Charge
transport in CdTe solar cells revealed by conductive tomographic atomic force
microscopy. Nat. Energy 1 (11), 16150.

Mark, J.E., 2009. Polymer Data Handbook. Oxford University Press, New York.

Maugis, D., 1992. Adhesion of spheres: the JKR-DMT transition using a Dugdale
model. J. Colloid Interface Sci. 150 (1), 243-269.

Maugis, D., 2000. Contact. Contact, Adhesion and Rupture of Elastic Solids. Springer-
Verlag, Berlin.

McKay, T.G., O'Brien, B.M., Calius, E.P., Anderson, L.A., 2011. Soft generators using
dielectric elastomers. Appl. Phys. Lett. 98, (14) 142903.

Michatowski, M., Luczak, S., 2018. AFM cantilevers with spherical tip of millimeter
size. J. Micromech. Microeng. 29, 017002.

Mirfakhrai, T., Madden, J.D.W., Baughman, R.H., 2007. Polymer artificial muscles.
Mater. Today 10 (4), 30-38.

Mirvakili, S.M., Hunter, LW., 2018. Artificial muscles: mechanisms, applications, and
challenges. Adv. Mater. 30 (6), 1704407.

Molberg, M., Crespy, D., Rupper, P., Nuesch, F., Manson, J.-A.-E., Lowe, C., Opris, D.M.,
2010. High breakdown field dielectric elastomer actuators using encapsulated
polyaniline as high dielectric constant filler. Adv. Funct. Mater. 20, 3280-3291.

Nowinski, J.L., 1969. Surface instability of a half-space under high two-dimensional
compression. . Franklin Inst. 288, 367-376.

O’Halloran, A., O’'Malley, F., McHugh, P., 2008. A review on dielectric elastomer
actuators, technology, applications, and challenges. J. Appl. Phys. 104, (7)
071101.


http://refhub.elsevier.com/S0020-7683(20)30385-1/h0005
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0005
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0010
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0010
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0015
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0015
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0015
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0020
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0020
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0025
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0025
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0025
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0030
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0030
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0035
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0035
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0035
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0040
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0040
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0045
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0045
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0045
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0050
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0050
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0050
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0055
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0055
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0055
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0060
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0060
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0060
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0060
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0065
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0065
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0065
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0070
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0070
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0075
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0075
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0075
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0080
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0080
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0080
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0085
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0085
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0090
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0090
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0090
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0095
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0095
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0100
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0100
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0100
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0105
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0105
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0110
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0110
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0110
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0115
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0115
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0120
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0120
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0125
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0125
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0130
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0130
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0135
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0135
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0140
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0140
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0145
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0145
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0145
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0150
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0150
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0155
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0155
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0160
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0160
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0165
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0165
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0170
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0170
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0175
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0175
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0180
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0180
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0180
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0185
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0190
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0190
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0190
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0195
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0195
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0200
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0200
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0200
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0205
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0205
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0210
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0210
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0215
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0215
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0215
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0215
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0220
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0220
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0220
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0225
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0225
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0225
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0225
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0230
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0230
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0235
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0235
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0240
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0240
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0240
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0240
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0245
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0245
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0245
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0250
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0250
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0250
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0255
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0255
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0260
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0260
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0265
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0265
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0265
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0270
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0270
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0270
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0275
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0275
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0275
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0280
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0280
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0285
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0285
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0285
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0290
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0290
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0290
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0295
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0300
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0300
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0305
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0305
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0310
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0310
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0315
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0315
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0315
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0320
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0320
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0325
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0325
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0330
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0330
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0330
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0335
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0335
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0340
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0340

G. Xia, Y. Huang, Y. Su et al.

Oliver, W.C., Pharr, G.M., 1992. An improved technique for determining hardness
and elastic modulus using load and displacement sensing indentation
experiments. J. Mater. Res. 7 (6), 1564-1583.

Osmani, B., Seifi, S., Park, H.S. Leung, V. Topper, T. Miiller, B., 2017.
Nanomechanical probing of thin-film dielectric elastomer transducers. Appl.
Phys. Lett. 111, (9) 093104.

Pan, K, Liu, Y.Y. Xie, S.H., Liu, Y.M,, Li, .Y, 2013. The electromechanics of
piezoresponse force microscopy for a transversely isotropic piezoelectric
medium. Acta Mater. 61 (18), 7020-7033.

Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J., 2000. High-speed electrically actuated
elastomers with strain greater than 100%. Science 287 (5454), 836-839.

Pelrine, R.E., Kornbluh, R.D., Joseph, ].P., 1998. Electrostriction of polymer dielectrics
with compliant electrodes as a means of actuation. Sens. Actuators A 64 (1), 77—
85.

Racles, C., Dascalu, M., Bele, A., Tiron, V., Asandulesa, M., Tugui, C., Vasiliu, A.-L.,
Cazacu, M., 2017. All-silicone elastic composites with counter-intuitive
piezoelectric response, designed for electromechanical applications. ]. Mater.
Chem. C 5 (28), 6997-7010.

Rizzello, G., Naso, D., York, A., Seelecke, S., 2016. Closed loop control of dielectric
elastomer actuators based on self-sensing displacement feedback. Smart Mater.
Struct. 25, (3) 035034.

Saha, R, Nix, W.D., 2002. Effects of the substrate on the determination of thin film
mechanical properties by nanoindentation. Acta Mater. 50 (1), 23-38.

Schwarz, U.D., 2003. A generalized analytical model for the elastic deformation of
an adhesive contact between a sphere and a flat surface. ]. Colloid Interface Sci.
261 (1), 99-106.

Shankar, R., Ghosh, T.K., Spontak, RJ. 2007. Dielectric elastomers as next-
generation polymeric actuators. Soft Matter 3 (9), 1116-1129.

Shian, S., Diebold, R.M., Clarke, D.R,, 2013. Tunable lenses using transparent
dielectric elastomer actuators. Opt. Express 21 (7), 8669-8676.

Su, Y.P., Broderick, H.C., Chen, W.Q., Destrade, M., 2018. Wrinkles in soft dielectric
plates. J. Mech. Phys. Solids 119, 298-318.

Su, Y.P., Chen, W.Q., Destrade, M., 2019. Tuning the pull-in instability of soft
dielectric elastomers through loading protocols. Int. J. Non-Linear Mech. 113,
62-66.

Suo, Z.G., 2012. Mechanics of stretchable electronics and soft machines. MRS Bull.
37 (3), 218-225.

Suo, Z.G., Zhao, X.H., Greene, W.H., 2008. A nonlinear field theory of deformable
dielectrics. ]. Mech. Phys. Solids 56 (2), 467-486.

Suo, Z.G., 2010. Theory of dielectric elastomers. Acta Mech. Solida Sin. 23 (6), 549-
578.

Toupin, R.A., 1956. The elastic dielectric. ]. Rational Mech. Anal. 5 (6), 849-915.

229

International Journal of Solids and Structures 207 (2020) 206-229

Trivedi, D., Rahn, C.D., Kier, W.M., Walker, 1.D., 2008. Soft robotics: biological
inspiration, state of the art, and future research. Appl. Bionics Biomech. 5 (3),
99-117.

Usmani, S.A., Beatty, M.F.,, 1974. On the surface instability of a highly elastic half-
space. ]. Elast. 4, 249-263.

Wang, B.Y., Krause, S., 1987. Properties of dimethylsiloxane microphases in phase-
separated dimethylsiloxane block copolymers. Macromolecules 20, 2201-2208.

Wau, B,, Su, Y.P,, Chen, W.Q,, Zhang, C.Z., 2017. On guided circumferential waves in
soft electroactive tubes under radially inhomogeneous biasing fields. . Mech.
Phys. Solids 99, 116-145.

Wu, J., Kim, S., Chen, W.Q., Carlson, A., Hwang, K.-C., Huang, Y.G., Rogers, J.A., 2011.
Mechanics of reversible adhesion. Soft Matter 7 (18), 8657-8662.

Wau, Y.F., 2012. Indentation Analysis of Piezoelectric Materials and Quasicrystals.
Zhejiang University, Hangzhou, China.

Yam, C.-M,, Xiao, Z.D., Gu, ].H., Boutet, S., Cai, C.Z., 2003. Modification of silicon AFM
cantilever tips with an oligo(ethylene glycol) derivative for resisting proteins
and maintaining a small tip size for high-resolution imaging. ]. Am. Chem. Soc.
125 (25), 7498-7499.

Yang, F.Q., 2006. Effect of adhesion energy on the contact stiffness in
nanoindentation. ]. Mater. Res. 21 (10), 2683-2688.

Zhang, M.G., Cao, Y.P,, Li, G.Y., Feng, X.Q., 2014. Spherical indentation method for
determining the constitutive parameters of hyperelastic soft materials.
Biomech. Model. Mechanobiol. 13 (1), 1-11.

Zhang, Q., Li, H.,, Poh, M,, Xia, F.,, Cheng, Z., Xu, H., Huang, C., 2002. An all-organic
composite actuator material with a high dielectric constant. Nature 419, 284-287.

Zhang, W.L, Qian, J.,, Chen, W.Q., 2012. Indentation of a compressible soft
electroactive half-space: some theoretical aspects. Acta Mech. Sin. 28 (4),
1133-1142.

Zhao, X.H., Suo, Z.G., 2007. Method to analyze electromechanical stability of
dielectric elastomers. Appl. Phys. Lett. 91, 061921.

Zheng, Y., Crosby, AJ., Cai, S., 2017. Indentation of a stretched elastomer. J. Mech.
Phys. Solids 107, 145-159.

Zhu, RK., Ming, W, Liu, Y.Y., Pan, K., Lei, C.H., 2018. The intrinsic piezoresponse in
piezoelectric medium under contact-mode piezoresponse force microscopy. Int.
J. Mech. Sci. 145, 400-409.

Zisis, T.h., Zafiropoulou, V.1, Giannakopoulos, A.E., 2011. The adhesive contact of a
flat punch on a hyperelastic substrate subject to a pull-out force or a bending
moment. Mech. Mater. 43, 1-24.

Zisis, T.h., Zafiropoulou, V.1, Giannakopoulos, A.E., 2015. Evaluation of material
properties of incompressible hyperelastic materials based on instrumented
indentation of an equal-biaxial prestretched substrate. Int. J. Solids Struct. 64—
65, 132-144.


http://refhub.elsevier.com/S0020-7683(20)30385-1/h0345
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0345
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0345
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0350
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0350
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0350
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0355
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0355
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0355
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0360
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0360
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0365
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0365
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0365
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0370
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0370
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0370
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0370
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0375
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0375
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0375
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0380
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0380
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0385
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0385
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0385
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0390
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0390
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0395
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0395
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0400
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0400
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0405
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0405
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0405
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0410
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0410
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0415
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0415
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0420
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0420
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0425
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0430
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0430
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0430
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0435
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0435
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0440
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0440
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0445
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0445
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0445
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0450
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0450
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0455
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0455
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0460
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0460
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0460
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0460
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0465
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0465
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0470
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0470
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0470
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0475
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0475
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0480
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0480
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0480
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0485
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0485
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0490
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0490
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0495
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0495
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0495
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0500
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0500
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0500
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0505
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0505
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0505
http://refhub.elsevier.com/S0020-7683(20)30385-1/h0505

	Exact axisymmetric adhesive contact analysis for a pre-deformed soft electroactive half-space
	1 Introduction
	2 Governing equations of a uniformly pre-deformed SEA body
	3 Exact adhesive contact analysis
	3.1 Indentation by a rigid punch
	3.2 Adhesive contact of three typical indenters
	3.2.1 Flat-ended circular punch
	3.2.2 Conical punch
	3.2.3 Spherical punch


	4 Numerical results and discussion
	4.1 Verification of the exact solutions
	4.2 Indentation response of a neo-Hookean electroactive half-space by a flat-ended punch
	4.3 Validity of linear indentation analysis for adhesive spherical contact
	4.4 More results for spherical and conical indentations

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A A summary of fundamental formulations
	A.1. Nonlinear theory of electroelasticity
	A.2. General solution for a pre-deformed SEA body
	A.3. Conducting indenters
	A.3.1. Potential theory method
	A.3.2. Modified JKR model
	A.3.3. Indentation analysis

	A.4. Insulating indenters
	A.4.1. Potential theory method
	A.4.2. Modified JKR model
	A.4.3. Indentation analysis


	Appendix B Related parameters
	B.1. Non-zero components of the effective material tensors
	B.2. Expressions of hij

	Appendix C Exact solutions for three typical indenters
	C.1. Circular flat-ended punch
	C.2. Conical punch
	C.3. Spherical punch

	Appendix D Surface instability of a half-space
	Appendix E Corresponding results for a perfectly insulating flat-ended indenter
	Appendix F 
	References


