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a b s t r a c t 

Soft electroactive materials show great potential for device and robot applications. However, these materi- 

als are apt to experience buckling and pull-in instability under critical pressure or voltage, and, therefore, 

their practical applications are more or less prevented. In this paper, buckling behavior of incompress- 

ible soft electroactive hollow cylinders is investigated based on the nonlinear theory of electroelasticity 

and the associated linear incremental field theory. Hollow cylinders including or excluding the effects 

of exterior electric field are studied in a comparison manner. The equations governing the linearized in- 

cremental motion upon a finitely deformed configuration in the presence of an electric field are derived 

and exactly solved by introducing three displacement functions. As an illustrative example, the generic 

isotropic electroactive materials are considered and results are presented for a simple model of ideal 

electroelastic material. Numerical calculations show that the buckling of electroactive hollow cylinders is 

significantly influenced by the biasing fields, the electromechanical coupling parameters, the geometri- 

cal parameters of the cylinder, and the electric field outside the cylinder. In particular, a phase diagram 

is constructed based on the numerical results to clearly identify the dominant buckling modes and the 

transition between them in the κ − −ν (axial wave number versus radius ratio) plane. 

© 2016 Published by Elsevier Ltd. 
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. Introduction 

Commonly, the instability phenomenon is considered as neg-

tive that should be accurately predicted and carefully avoided.

tabilities of elastic bodies have attracted considerable attention

ince Euler’s classical work on the buckling of thin columns ( Euler

nd Carathéodory, 1952 ). It is well known that a slender elastic

ody will buckle under a sufficiently large compressive load, the

o-called Euler buckling. 

Wilkes (1955) seems to be the first to address the instability

f a cylindrical shell under axial load by using three-dimensional

heory of nonlinear elasticity. The linearized system around a fi-

ite axial strain was solved exactly in terms of Bessel functions. It

as found that the bifurcation curves for the incompressible neo-

ookean material have a horizontal asymptote of λ ≈ 0.4 4 4, which

orresponds to surface instability of a compressed half-space. How-

ver, Wilkes’s calculation was confined to the axisymmetric mode

( n = 0 ) . Pan and Beatty (1997) considered an incompressible cylin-
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rical tube and derived the formulation of bifurcation criterion in-

luding both axisymmetric mode ( n = 0 ) and asymmetric mode

( n = 1 ) . They compared the results obtained using neo-Hookean,

ooney–Rivlin and Gent–Thomas models. Dorfmann and Haughton

2006) extended the theory to look at a selection of compress-

ble materials and considered higher order bifurcation modes. It

as shown that long thick-walled tube undergoes asymmetric

ode buckling while short thick-walled tube undergoes axisym-

etric mode buckling at some critical loading. However, for thin-

alled tube, the occurrence of various critical bifurcation modes

( n = 0 , 1 , 2 , 3 , . . . ) depends on the length of the tube. Goriely et al.

2008) used the Stroh formalism to investigate the instability of an

ncompressible cylindrical shell under axial load, and expanded the

xact solution up to order 2, 4 and 6 so as to make a comparative

tudy. 

Soft electroactive materials have appeared as smart materi-

ls which enable realizing the conversion between electrical and

echanical energies. Due to their low weight, rapid response

nd large deformation under electrical stimulus, soft electroac-

ive materials are widely used to develop high-performance de-

ices such as actuators, artificial muscles, energy harvesters and

pace robotics ( Pelrine et al., 20 0 0; Bhattacharya et al., 20 04; O’

alloran et al., 2008 ). The strong nonlinearity and the electrome-
sible electroactive hollow cylinder, International Journal of Solids 
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>  
chanical coupling should be taken into account in the analysis of

soft electroactive materials or structures. The formulation of a gen-

eral nonlinear theory of electroelasticity was first developed by

Toupin (1956) and has been intensively studied in recent years

( McMeeking and Landis, 2005; Dorfmann and Ogden, 2006; Erick-

sen, 2007; Suo et al., 2008; Ogden, 2009 ). 

Electroactive materials are often working under extremely high

voltage, thus susceptible to fail in the form of electromechanical

instability which can be a precursor of electrical breakdown ( Stark

and Garton, 1955; Blok and LeGrand, 1969 ). Such instability phe-

nomenon poses a clear limitation in the development of devices

based on electroactive materials. Careful modeling and analyses are

therefore required. 

Experiments showed the coexistence of two regions, i.e., flat

and wrinkles, in an electroactive film when subjected to critical

applied voltage. Stable wrinkles arise first and then pull-in in-

stability occurs as the applied voltage keeps increasing ( Plante

and Dubowsky, 2006 ). Zhao et al. (2007) and Zhao and Suo

(2007) demonstrated that the electroactive film will undergo in-

homogeneous deformation because the free-energy function of the

elastomer is typically nonconvex, and that the electromechanical

instability occurs when the generalized tangent modulus ceases to

be positive definite. They further revealed that the electromechan-

ical instability of electroactive materials can be considerably en-

hanced by prestress. Dorfmann and Ogden (2010) considered the

stability of an incompressible electroactive half-space subjected to

pure homogeneous compression in the presence of an applied elec-

tric field normal to its surface. They ( Dorfmann and Ogden, 2014 )

also investigated the instability of an equibiaxially stretched elec-

troelastic plate with and without the effects of exterior electric

field, which exhibits different f eatures because of the differences

in electric boundary conditions. Díaz-Calleja et al. (2009) analyzed

the bifurcation characteristics of two biaxially stretched incom-

pressible rubber slabs, one with flexible electrodes on its two sur-

faces, and the other floating between two fixed electrodes. It was

shown that the effects of electric field on the bifurcation of the two

slabs are inverse and the pull-in phenomenon in the second case

can be prevented if the gap between the sample and the electrodes

is large enough. Recently, dielectric composites have attracted con-

siderable interests because they can markedly improve the perfor-

mance of dielectric devices ( Huang et al., 2004; deBotton et al.,

2007 ). The stability of multilayered soft dielectrics were system-

atically investigated by Bertoldi and Gei (2011) and Rudykh and

deBotton (2011) . 

Dielectric elastomer tube actuator (DETA) was proposed first by

Pelrine et al. (1998) . Compared to other dielectric elastomer con-

figurations (for example, plate and membrane actuators), DETA has

very low inactive-to-active material ratio, and is less bulky but

more versatile for applications ( Carpi and Rossi, 2004; Cameron et

al., 2008 ). Similarly, DETA is also susceptible to electromechanical

instability. Thus, it is necessary to analyze the stability of electroac-

tive material of cylindrical structure. Zhu et al. (2010) obtained

an analytical solution for the finite deformation of a DETA which

is mechanically prestretched and actuated by a voltage. They also

studied the effects of prestretch and geometry on electromechan-

ical instabilities of the tube actuator using a linear perturbation

method. Zhou et al. (2014) demonstrated that the electromechan-

ical instability of a DETA could be avoided, and larger actuation

deformation may be achieved by applying specific boundary con-

straints. Most recently, Zhang et al. (2015) examined four failure

modes of a DETA, including loss of tension, electrical breakdown,

snap-through instability and tensile rupture. 

The so-called Hessian approach was widely adopted to ana-

lyze the stability of electroactive material ( Zhao et al., 2007; Zhao

and Suo 2007; Díaz-Calleja et al., 2009 ). However, these analy-

ses were only limited to homogeneous deformations, and the as-
Please cite this article as: Y. Su et al., On buckling of a soft incompres

and Structures (2016), http://dx.doi.org/10.1016/j.ijsolstr.2016.07.008 
ociate results did not reflect the dependence of buckling behav-

or on the geometry of the structure. Taking both geometry and

on-homogeneous deformation into consideration, the occurrence

f diffuse modes of an electroactive hollow cylinder subjected to

 uniform biasing electric field is exactly investigated in this pa-

er. The governing equations will be derived in form of incre-

ental fields upon a finite deformation state. By introducing three

isplacement functions, exact solutions are presented in terms of

essel functions, and, with the incorporation of boundary condi-

ions, the characteristic equation for buckling behavior of the cylin-

er is derived. A simple prototype model, namely the neo-Hookean

lectroelastic material, is considered as an illustrative example. A

imple scaling law involving the normalized critical compression

nd normalized wave number is derived for tuning the buckling

ehavior of the cylinder. Numerical calculations will be performed

o examine the effects of material parameters, biasing electric field,

nd geometrical configuration on the buckling properties of the

ylinder. The influence of the electric field in the vacuum exterior

o the cylinder will also be investigated through comparative stud-

es. 

. Finite deformation and incremental motion 

For better understanding the derivations, the general formula-

ions associated with the nonlinear electroelasticity and the lin-

ar incremental field theory ( Dorfmann and Ogden, 2006; Ogden,

009 ) are briefly reviewed in Appendix A . Consider an isotropic, in-

ompressible soft electroactive hollow cylinder with initial length

 , inner radius R i , and outer radius R o , respectively. The radius ra-

io of the cylindrical shell is denoted by ν = R i / R o . The cylinder

s assumed subjected to an axial mechanical load and a uniaxial

iasing electric displacement D z that is aligned with the axial di-

ection. The hollow cylinder then deforms to become a one with

ength l , and inner and outer radii r i and r o , respectively. The ini-

ial and current cylindrical coordinates are respectively designated

s ( R, �, Z ) and ( r, θ , z ) with the origin located at the center of

ne end of the cylinder. For incompressible materials, the principal

tretches of the cylinder are 

z = λ, λr = λθ = λ−1 / 2 (1)

Then, the deformation gradient F is given by 

 = 

[ 

λ−1 / 2 0 0 

0 λ−1 / 2 0 

0 0 λ

] 

. (2)

For axisymmetric deformation, the non-zero components of the

otal stress tensor and electric field vector may be derived from Eq.

A1) as ( Dorfmann and Ogden, 20 06; Ogden, 20 09; Chen and Dai,

012 ): 

rr = τθθ = 2 W 1 λ
−1 + 2 W 2 

(
I 1 λ

−1 − λ−2 
)

− p, (3a)

zz = 2 W 1 λ
2 + 2 W 2 

(
I 1 λ

2 − λ4 
)

+ 2 W 5 D 

2 
z + 4 W 6 λ

2 D 

2 
z − p, (3b)

 z = 2 

(
W 4 λ

−2 + W 5 + W 6 λ
2 
)
D z , (3c)

here W m 

= ∂ W/∂ I m 

, with I m 

being the m th invariant as given in

q. (A2) . It is straightforward from Eq. (3c) that 

 z = 

E z 

2 

(
W 4 λ−2 + W 5 + W 6 λ2 

) = ε E z , (4)

hich implies that the permittivity of the material relies on the

eformation of the cylinder, i.e., ε = ε(λ) , if W 4 � = 0 or W 6 � = 0. 

Considering the effects of exterior electric fields ( r < r i or r

 r o ), the boundary conditions in the second and third equa-
sible electroactive hollow cylinder, International Journal of Solids 

http://dx.doi.org/10.1016/j.ijsolstr.2016.07.008
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ions of ( A4 ) at r = r i and r = r o read as ( E − E 

∗
m 

) × n m 

= 0 and

( D − D 

∗
m 

) · n m 

= 0( m = o, i ) respectively, where n o = ( 1 , 0 , 0 ) and

 i = ( −1 , 0 , 0 ) . Combining them with Eq. (3), we have 

E ∗oz = E ∗iz = E z = 

D z 

ε 
, 

D 

∗
oz = D 

∗
iz = 

ε 0 
ε 

D z , 

∗
orr = τ ∗

oθθ = −τ ∗
ozz = τ ∗

irr = τ ∗
iθθ = −τ ∗

izz = − ε 0 
2 ε 2 

D 

2 
z , (5) 

here and in the text hereafter the superscript star represents the

orresponding physical quantities in vacuum, while ɛ 0 is the per-

ittivity of vacuum. 

It is apparent that the stress and electric fields in the hollow

ylinder and/or exterior vacuum space are all uniform. Without the

ction of applied mechanical traction on the two lateral cylindrical

urfaces, the hydrostatic pressure p may be determined by the rela-

ion τrr = τ ∗
orr = τ ∗

irr 
as 

p = 2 W 1 λ
−1 + 2 W 2 

(
I 1 λ

−1 − λ−2 
)

+ 

ε 0 
2 ε 2 

D 

2 
z . (6)

Substituting Eq. (6) into Eq. (3b) , τ zz may be completely deter-

ined which should meet the mechanical boundary conditions at

he ends. 

Now, consider a small increment superimposed on the de-

ormed configuration of the hollow cylinder. With the underly-

ng deformed state as the reference configuration, the incremen-

al displacement components may be expressed as u i = u i ( r, θ, z )

 i = r, θ, z). The displacement gradient is obtained as 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ u r 

∂r 

1 

r 

(
∂ u r 

∂θ
− u θ

)
∂ u r 

∂z 

∂ u θ

∂r 

1 

r 

(
∂ u θ

∂θ
+ u r 

)
∂ u θ

∂z 

∂ u z 

∂r 

1 

r 

∂ u z 

∂θ

∂ u z 

∂z 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(7) 

The incompressibility condition in Eq. (A8) becomes 

∂ u r 

∂r 
+ 

1 

r 

(
∂ u θ

∂θ
+ u r 

)
+ 

∂ u z 

∂z 
= 0 . (8)

In general, the electric field is irrotational which allows the in-

remental electric field to be expressed as 

˙ 
 l0 r = −∂φ

∂r 
, ˙ E l0 θ = −1 

r 

∂φ

∂θ
, ˙ E l0 z = −∂φ

∂z 
, (9)

here φ is the electric potential in the cylinder. 

According to the linear incremental field theory ( Dorfmann and

gden, 2006; Ogden, 2009 ), substitution of Eqs. (7) and ( 9 ) into

q. (A6) gives rise to the components of the incremental stress and

lectric fields as 

˙ D l0 r = e 15 

(
∂ u r 

∂z 
+ 

∂ u z 

∂r 

)
− ε 11 

∂φ

∂r 
, 

˙ 
 l0 θ = e 15 

(
∂ u θ

∂z 
+ 

1 

r 

∂ u z 

∂θ

)
− ε 11 

1 

r 

∂φ

∂θ
, 

˙ D l0 z = e 31 

[
∂ u r 

∂r 
+ 

1 

r 

(
∂ u θ

∂θ
+ u r 

)]
+ e 33 

∂ u z 

∂z 
− ε 33 

∂φ

∂z 
, 

˙ T 0 rr = ( c 11 + p ) 
∂ u r 

∂r 
+ c 12 

1 

r 

(
∂ u θ

∂θ
+ u r 

)
+ c 13 

∂ u z 

∂z 
+ e 31 

∂φ

∂z 
− ˙ p , 

˙ T 0 θθ = c 12 
∂ u r 

∂r 
+ ( c 11 + p ) 

1 

r 

(
∂ u θ

∂θ
+ u r 

)
+ c 13 

∂ u z 

∂z 
+ e 31 

∂φ

∂z 
− ˙ p , 

˙ T 0 zz = c 13 
∂ u r 

∂r 
+ c 13 

1 

r 

(
∂ u θ

∂θ
+ u r 

)
+ ( c 33 + p ) 

∂ u z 

∂z 
+ e 33 

∂φ

∂z 
− ˙ p , 
Please cite this article as: Y. Su et al., On buckling of a soft incompres

and Structures (2016), http://dx.doi.org/10.1016/j.ijsolstr.2016.07.008 
˙ 
 0 rθ = c 661 

∂ u θ

∂r 
+ ( c 662 + p ) 

1 

r 

(
∂ u r 

∂θ
− u θ

)
, 

˙ 
 0 θ r = c 661 

1 

r 

(
∂ u r 

∂θ
− u θ

)
+ ( c 662 + p ) 

∂ u θ

∂r 
, 

˙ T 0 rz = ( c 551 + p ) 
∂ u r 

∂z 
+ c 552 

∂ u z 

∂r 
+ e 15 

∂φ

∂r 
, 

˙ T 0 zr = c 553 
∂ u r 

∂z 
+ ( c 551 + p ) 

∂ u z 

∂r 
+ e 15 

∂φ

∂r 
, 

˙ 
 0 θz = c 552 

1 

r 

∂ u z 

∂θ
+ ( c 551 + p ) 

∂ u θ

∂z 
+ e 15 

1 

r 

∂φ

∂θ
, 

˙ 
 0 zθ = c 553 

∂ u θ

∂z 
+ ( c 551 + p ) 

1 

r 

∂ u z 

∂θ
+ e 15 

1 

r 

∂φ

∂θ
, (10) 

here c ij (or c ijk ), e ij , and ɛ ij are the effective electroelastic moduli

f the cylinder under the action of initial biasing electric displace-

ent D z and pre-stretch λ. They are related to the deformation

radient F and D z according to Eq. (A7) . The detailed formulations

ay be referred to Su et al. (2016) and not reproduced here for

ompact. 

Substituting Eq. (10) into the differential equations of motion

 A9 ) 1, 3 , we obtain [
e 15 ∇ 

2 + ( e 33 − e 31 − e 15 ) 
∂ 2 

∂ z 2 

]
u z −

(
ε 11 ∇ 

2 + ε 33 
∂ 2 

∂ z 2 

)
φ = 0 [

c 11 

(
∂ 2 

∂ r 2 
+ 

1 

r 

∂ 

∂r 
− 1 

r 2 

)
+ c 661 

1 

r 2 
∂ 2 

∂ θ2 
+ c 553 

∂ 2 

∂ z 2 

]
u r 

+ 

[
( c 662 + c 12 ) 

1 

r 

∂ 2 

∂ r∂ θ
− ( c 11 + c 661 ) 

1 

r 2 
∂ 

∂θ

]
u θ

+ ( c 13 + c 551 ) 
∂ 2 u z 

∂ r∂ z 
+ ( e 31 + e 15 ) 

∂ 2 φ

∂ r∂ z 
− ∂ ˙ p 

∂r 
= 0 , [

( c 662 + c 12 ) 
1 

r 

∂ 2 

∂ r∂ θ
+ ( c 11 + c 661 ) 

1 

r 2 
∂ 

∂θ

]
u r 

+ 

[
c 661 

(
∂ 2 

∂ r 2 
+ 

1 

r 

∂ 

∂r 
− 1 

r 2 

)
+ c 11 

1 

r 2 
∂ 2 

∂ θ2 
+ c 553 

∂ 2 

∂ z 2 

]
u θ

+ ( c 13 + c 551 ) 
1 

r 

∂ 2 u z 

∂ θ∂ z 
+ ( e 31 + e 15 ) 

1 

r 

∂ 2 φ

∂ θ∂ z 
− 1 

r 

∂ ˙ p 

∂θ
= 0 , 

( c 551 + c 13 ) 

(
∂ 2 

∂ r∂ z 
+ 

1 

r 

∂ 

∂z 

)
u r + ( c 13 + c 551 ) 

1 

r 

∂ 2 u θ

∂ θ∂ z 

+ 

(
c 552 ∇ 

2 + c 33 
∂ 2 

∂ z 2 

)
u z + 

(
e 15 ∇ 

2 + e 33 
∂ 2 

∂ z 2 

)
φ − ∂ ˙ p 

∂z 
= 0 , 

(11) 

here ∇ 

2 = 

∂ 2 

∂ r 2 
+ 

1 
r 

∂ 
∂r 

+ 

1 
r 2 

∂ 2 

∂ θ2 is the two-dimensional Laplace op-

rator. 

Assuming that the cylinder is under end thrust with the two

nd cross-sections remaining plane and the two lateral cylindrical

urfaces are traction-free. The boundary conditions for the incre-

ental fields may be expressed as 

˙ E l0 θ − ˙ E ∗mθ − E ∗mz 

1 

r 

∂ u z 

∂θ
= 0 , ˙ E l0 z − ˙ E ∗mz − E ∗mz 

∂ u z 

∂z 
= 0 , 

˙ D l0 r + D 

∗
mz 

∂ u r 

∂z 
− ˙ D 

∗
mr = 0 ( r = r m 

; m = o, i ) , (12) 

˙ 
 0 rr = ˙ τ ∗

mrr − τ ∗
mrr 

∂ u r 

∂r 
, ˙ T 0 rθ = ˙ τ ∗

mθ r − τ ∗
mθθ

1 

r 

(
∂ u r 

∂θ
− u θ

)
, 

˙ 
 0 rz = ˙ τ ∗

mzr − τ ∗
mzz 

∂ u r 

∂z 
( r = r m 

; m = o, i ) , (13) 
sible electroactive hollow cylinder, International Journal of Solids 
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where the non-zero components of the incremental Maxwell stress

˙ τ ∗
mi j 

are derived from Eq. (A13) as 

˙ τ ∗
mrr = ˙ τ ∗

mθθ = − ˙ τ ∗
mzz = −ε 0 E 

∗
z 

˙ E ∗z , 

˙ τ ∗
mrz = ˙ τ ∗

mzr = ε 0 E 
∗
z 

˙ E ∗r , ˙ τ ∗
mθ r = 0 ( m = o, i ) , (14)

while the incremental electric displacement and electric field in

the vacuum space satisfy ˙ D 

∗
m j 

= ε 0 ˙ E ∗
m j 

with 

˙ E ∗
m j 

, from the nature

of irrotational electric field, expressed by 

˙ E ∗mr = −∂φ∗
m 

∂r 
, ˙ E ∗mθ = −1 

r 

∂φ∗
m 

∂θ
, ˙ E ∗mz = −∂φ∗

m 

∂z 
. (15)

where φ∗
m 

is the electric potential in vacuum. Combining

Eq. (15) with Eq. (A12) makes the following Laplace’s equation hold

for φ∗
m 

∇ 

2 φ∗
m 

+ 

∂ 2 φ∗
m 

∂ z 2 
= 0 ( m = o, i ) . (16)

Eqs. (12) –( 16 ) indicate that the boundary conditions for a soft

electroactive cylinder in incremental motion depend on the exte-

rior electric field that is governed by Eq. (16) . 

3. Buckling analysis 

Eqs. (8) and ( 11 ) govern the incremental motion upon finite

deformation of the electroactive hollow cylinder in terms of five

unknown functions u r , u θ , u z , φ, ˙ p . Similar to the treatment for in-

finitesimal motion of a transversely isotropic body ( Ding and Chen,

2001; Ding et al., 2006; Su et al., 2016 ), we introduce three dis-

placement functions ψ , G , and U in the manner of 

u r = 

1 

r 

∂ψ 

∂θ
− ∂G 

∂r 
, u θ = −∂ψ 

∂r 
− 1 

r 

∂G 

∂θ
, u z = U. (17)

Then Eqs. (8) and ( 11 ) are reduced to (
c 661 ∇ 

2 + c 553 
∂ 2 

∂ z 2 

)
ψ = 0 , [

( c 11 − c 13 − c 551 ) ∇ 

2 + c 553 
∂ 2 

∂ z 2 

]
G − ( e 31 + e 15 ) 

∂φ

∂z 
+ 

˙ p = 0 , [
c 552 ∇ 

2 + ( c 33 − c 13 − c 551 ) 
∂ 2 

∂ z 2 

]
U + 

(
e 15 ∇ 

2 + e 33 
∂ 2 

∂ z 2 

)
φ

−∂ ˙ p 

∂z 
= 0 , [

e 15 ∇ 

2 + ( e 33 − e 31 − e 15 ) 
∂ 2 

∂ z 2 

]
U −

(
ε 11 ∇ 

2 + ε 33 
∂ 2 

∂ z 2 

)
φ = 0 , 

−∇ 

2 G + 

∂U 

∂z 
= 0 , (18)

where the relation c 11 − c 12 − c 662 = c 661 has been used. Note that

the displacement function ψ is decoupled from the other four un-

known functions, which makes the equation system much simpler.

Buckling of the cylinder requires a non-trivial solution to the

linearized equations of small incremental deformation. For the in-

cremental motion of the cylinder, we consider the slippage effects

at the two ends described by the following boundary conditions:

 ( r, θ, 0 ) = U ( r, θ, l ) = 0 , (19a)

˙ T 0 zθ ( r, θ, 0 ) = 

˙ T 0 zθ ( r, θ, l ) = 0 , (19b)

˙ T 0 zr ( r, θ, 0 ) = 

˙ T 0 zr ( r, θ, l ) = 0 . (19c)
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Then the solution for the linear equations of incremental field

ay be assumed in the form { 

ψ 

G 

˙ p 

} 

= 

∞ ∑ 

n =1 

∞ ∑ 

q =0 

⎧ ⎨ 

⎩ 

ψ̄ n (r) sin ( nθ ) 
Ḡ n (r) cos ( nθ ) 
¯̇
 p n (r) cos ( nθ ) 

⎫ ⎬ 

⎭ 

cos 
(

qπz 
λL 

)
, 

{ 

U 

φ
φ∗

m 

} 

= 

∞ ∑ 

n =1 

∞ ∑ 

q =0 

⎧ ⎨ 

⎩ 

Ū n (r) 

φ̄n (r) 

φ̄∗
m,n (r) 

⎫ ⎬ 

⎭ 

cos ( nθ ) sin 

(
qπz 
λL 

)
( m = o, i ) , 

(20)

here both n and q are integers, representing the circumferential

nd axial wave numbers, respectively. We can also treat k = 

qπ
λL 

as

he axial wave number, which usually is not an integer. By substi-

uting Eq. (20) into Eq. (18) , we obtain 

 + η2 
4 

)
ψ̄ n = 0 , (21)

[
( c 11 − c 13 − c 551 )  − c 553 k 

2 
]
Ḡ n − ( e 31 + e 15 ) k ̄φn + 

¯̇
 p n = 0 , [

c 552  − ( c 33 − c 13 − c 551 ) k 
2 
]
Ū n + 

(
e 15  − e 33 k 

2 
)
φn + k ̄˙ p n = 0 , [

e 15  − ( e 33 − e 31 − e 15 ) k 
2 
]
Ū n −

(
ε 11  − ε 33 k 

2 
)
φ̄n = 0 , 

−Ḡ n + k ̄U n = 0 , (22)

here  = 

d 2 

d r 2 
+ 

1 
r 

d 
d r 

− n 2 

r 2 
, and η2 

4 
= − c 553 k 

2 

c 661 
. Eq. (21) is a Bessel

quation of order n , and the solution is 

¯
 n = A 4 J n ( η4 r ) + B 4 Y n ( η4 r ) , (23)

here J n ( · ) and Y n ( · ) are respectively the n th order Bessel func-

ions of the first and second kinds. Similarly, for Eq. (22) , the solu-

ion can be sought by assuming 

 

 

 

 

 

Ḡ n 

Ū n 

φ̄n 

¯̇
 p n 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= J n (ηr) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

C 1 
C 2 
C 3 
C 4 

⎫ ⎪ ⎬ 

⎪ ⎭ 

+ Y n (ηr) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

D 1 

D 2 

D 3 

D 4 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, (24)

here C j and D j ( j = 1 ∼ 4 ) are constants to be determined, and η,

ccording to the non-trivial solution of the system, is determined

y the following characteristic equation 

η6 
(
e 2 15 + c 552 ε 11 

)
− η4 k 2 [ 2 e 15 ( e 15 + e 31 − e 33 ) 

−ε 11 ( c 11 − 2 c 13 + c 33 − 2 c 551 ) − c 552 ε 33 ] 

+ η2 k 4 
[
( e 15 + e 31 − e 33 ) 

2 + c 553 ε 11 + ε 33 ( c 11 − 2 c 13 + c 33 

−2 c 551 ) ] + c 553 ε 33 k 
6 = 0 . (25)

Generally, Eq. (25) has three pairs of roots in the way of ± ηj 

 j = 1 , 2 , 3 ), for which the Bessel functions Z n ( ηj r ) and Z n (−η j r)

 Z = J or Y ) with linear dependence on each other are both the

oots of Eq. (22) . For simplicity, we may choose three of them in

uch a way that Re [ η j ] > 0 , or Re [ η j ] = 0 and Im [ η j ] > 0 to con-

truct the complete solution, which is written as 

 

 

 

 

 

Ḡ n 

Ū n 

φ̄n 

¯̇
 p n 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

3 ∑ 

j=1 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

ζ1 j 

ζ2 j 

ζ3 j 

⎫ ⎪ ⎬ 

⎪ ⎭ 

[
A j J n 
(
η j r 
)

+ B j Y n 
(
η j r 
)]

(26)

here ζ ij are ratios between the constants and can be obtained

s 

1 j = −
η2 

j 

k 
, ζ2 j = 

e 15 η2 
j 
+ ( e 33 − e 31 − e 15 ) k 

2 

ε 11 η2 
j 
+ ε 33 k 2 

ζ1 j , 

3 j = −1 

k 

{[
−c 552 η

2 
j −( c 33 − c 13 −c 551 ) k 

2 
]
ζ1 j −

(
e 15 η

2 
j + e 33 k 

2 
)
ζ2 j 

}
. 

(27)
sible electroactive hollow cylinder, International Journal of Solids 

http://dx.doi.org/10.1016/j.ijsolstr.2016.07.008


Y. Su et al. / International Journal of Solids and Structures 0 0 0 (2016) 1–17 5 

ARTICLE IN PRESS 

JID: SAS [m5G; July 12, 2016;17:46 ] 

 

s  

l  

E

 

t  

U  

a(
t

φ  

w  

a  

a

 

E  

t  

s  

n  

|
 

(  

i  

n

4

 

t  

l  

f  

2

W

w  

s  

e  

w  

e  

c

I  

 

b

c

 

p  

t  

λ  

t  

m  

a  

e  

t

 

a

κ  

η  

a

η

D

5

 

s  

(  

r  

s  

s  

t  

a

5

 

f  

d  

d  

s  

τ

s  

 

l  

m  

n  

λ

−  

w  

c  

s  

h  

e  

p  

(  

c  

e

λ

 

f

With the solutions in Eqs. (23) and ( 26 ), the incremental

tresses, electric displacements and electric fields in the hol-

ow cylinder and vacuum space are readily obtainable by using

qs. (17) and ( 10 ) in turn. 

As mentioned before, the boundary conditions involve the elec-

ric potential φ∗
m 

in the exterior space that is governed by Eq. (16) .

sing the solution in Eq. (20) leads to a modified Bessel equation

s 

 − k 2 
)
φ̄∗

m 

= 0 ( m = o, i ) , (28) 

o which the solution is 

¯ ∗
o = A 

∗
o K n ( kr ) , φ̄∗

i = A 

∗
i I n ( kr ) , (29)

here A 

∗
o and A 

∗
i 

are unknown constants, while I n ( · ) and K n ( · )

re respectively the n th order modified Bessel functions of the first

nd second kinds. 

Inserting the solution of φ∗
m 

into the boundary conditions in

qs. (12) and ( 13 ) yields a system of ten linear homogeneous equa-

ions with respect to A j , B j ( j = 1 − 4 ) and A 

∗
m 

( m = o, i ) . Non-trivial

olutions for the cylinder’s buckling behavior require the determi-

ant of the coefficient matrix for the linear system to vanish, i.e.,

 

d | = 0 . (30) 

The elements d ij of the matrix d are given in Appendix C . Eq.

30) is the so-called bifurcation equation that identifies the crit-

cal pre-stretch λc which announces the arising of buckling phe-

omenon. 

. Illustrative example 

Application of the above formulations relies on the choice of

he energy density function W ( F, D l ) for the material. As an il-

ustrative example, the energy density function is assumed in the

ollowing amendatory neo-Hookean model ( Dorfmann and Ogden,

010 ) 

 = 

1 

2 

μ( I 1 − 3 ) + 

1 

ε 0 
( αI 4 + βI 5 ) , (31) 

here μ is the initial shear modulus and α, β are two dimen-

ionless electroelastic coupling parameters. The first term is the

nergy density function of an incompressible neo-Hookean solid,

hile the second term accounts for the interaction between the

lastic deformation and the electric field. For the current hollow

ylinder, the invariants in Eq. (31) are determined by 

 1 = λ2 + 

2 

λ
, I 4 = λ−2 D 

2 
z , I 5 = λ−4 D 

2 
z . (32)

The corresponding effective material parameters are obtained

y substituting Eqs. (2) and ( 31 ) into Eq. (A7) as 

c 11 = c 661 = μλ−1 , c 12 = c 13 = c 662 = 0 , c 33 = μλ2 + 2 ε −1 
0 βD 

2 
z 

− 8 ε −1 
0 

β2 D 

2 
z 

αλ−2 + β
, 

 551 = −2 ε −1 
0 

β2 D 

2 
z 

αλ + β
, c 552 = μλ−1 + c 551 , c 553 = μλ2 + 2 ε −1 

0 βD 

2 
z 

+ c 551 , 

ε 11 = 

ε 0 
2 ( αλ + β) 

, ε 33 = 

ε 0 

2 

(
αλ−2 + β

) , 
e 15 = − βD z 

αλ + β
, e 31 = 0 , e 33 = − 2 βD z 

αλ−2 + β
. (33) 

Generally, the electroelastic coupling parameters α and β are

ositive ( Ogden, 2009 ). We can see directly from Eq. (33) that

he permittivity ɛ decreases as the compression increases ( i.e .,
33 
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decreases), which is consistent with the experimental observa-

ions for a dielectric plate ( Wissler and Mazza, 2007 ). The per-

ittivity will be always constant during the deformation for α = 0

nd the dielectric behavior of the elastomer is liquidlike. Such an

nergy function corresponds to the so-called ideal dielectric elas-

omer ( Zhao and Suo, 2007 ). 

For the sake of presentation, the following dimensionless vari-

bles are introduced, 

= k r o , δ = 

D z √ 

με 0 
, η̄ j = η j r o ( j = 1 , 2 , 3 , 4 ) . (34)

The roots of Eq. (25) are then given by 

¯1 = iκ, η̄2 = iκλ3 / 2 , η̄3 = iκ

√ 

α + βλ−1 + 2 αβδ2 λ−2 

βλ−1 + αλ−3 
, (35)

nd η̄4 can be calculated as 

¯4 = iκ

√ 

λ3 + 

2 αβλ2 δ2 

αλ + β
. (36) 

Accordingly, Eq. (4) further simplifies to 

 z = 

ε 0 

2 

(
αλ−2 + β

)E z = ε E z . (37) 

. Results and discussions 

The impact of exterior electric field in vacuum on the re-

ponses of traditional piezoelectric materials is relatively small

 Chen, 1973 ). However, for soft electroactive materials, the exte-

ior electric field may play a key role, as shown in our previous

tudy on wave propagation in cylinders ( Su et al., 2016 ). In this

ection, we will analyze the buckling behavior of a soft electroac-

ive cylinder with or without the effect of exterior electric field in

 comparison manner through numerical calculations. 

.1. Including exterior electric field 

Here, we consider an electroactive cylinder immersed in a uni-

orm exterior electric field normal to its end faces. Then, the hy-

rostatic pressure is p = μλ−1 + 2 μ( αλ−2 + β) 2 δ2 , and the non-

imensional axial load s = g/μ (here g is the applied compres-

ive load) may be obtained from the boundary condition τzz =
∗
ozz − g( z = 0 , l ) as 

 = −λ2 + λ−1 + 4 δ2 (αλ−2 + β) 2 − 2 βδ2 . (38)

This equation reveals the effects of the applied compressive

oad and uniform longitudinal electric displacement on the defor-

ation of the cylinder. Under the stimulus of the initial longitudi-

al biasing electric displacement only, i.e., g = 0 , the axial stretch

of the cylinder may be determined through the equation 

λ2 + λ−1 + 4 δ2 (αλ−2 + β) 2 − 2 βδ2 = 0 , (39)

hich is a sextic equation of λ and is difficult to obtain analyti-

al solutions. Eq. (39) also indicates that the relation between the

tretch λ and stimulus δ depends on both α and β . In practice,

owever, it has been widely approved that the model of ideal di-

lectric elastomers, i.e., α = 0 in Eq. (31) , is accurate enough to

redict the response of a wide range of soft electroactive materials

 Zhao and Suo, 2007; Shmuel et al., 2012 ). Therefore, we only fo-

us on the buckling behavior of hollow cylinders of ideal dielectric

lastomer ( α = 0 ), for which Eq. (39) is reduced to 

2 − λ−1 = 2 βδ2 ( 2 β − 1 ) . (40) 

For this case, it is deterministic that λ > 1 for β > 0.5, λ < 1

or β < 0.5, and we always have λ = 1 for β = 0 . 5 . 
sible electroactive hollow cylinder, International Journal of Solids 
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Fig. 1. Plots of λ versus δ for a hollow cylinder of ideal dielectric elastomer ( α = 0 ) for various β . The dashed line represents the asymptote of the curve for β = 0 . 6 . 
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Note from Eq. (35) that, for ideal dielectric elastomers ( α = 0 ) ,

repeated roots of the characteristic Eq. (25) are present, i.e., η̄1 =
η̄3 . Thus, a solution in a form different from Eq. (24) is required

( Dorfmann and Ogden, 2014 ), which will change the related for-

mulations. Physically, however, the behavior of the cylinder should

be continuous when the parameter α reduces from a very small

number down to zero. This implies that we may take a sufficiently

small α (e.g. ∼10 −6 ) instead of α = 0 to avoid the repeated roots.

This has been validated through comprehensive numerical calcula-

tions. Then, the solution ( 24 ) can be still used for ideal dielectric

elastomers but based on a very close hypothetical non-ideal model.

Fig. 1 displays the stretch λ as a function of the normalized

biasing electric displacement δ according to Eq. (40) for ideal di-

electric elastomers. It is shown that the hollow cylinder is com-

pressed for β < 0.5 and stretched for β > 0.5 in the presence of

an electric displacement. When β = 0 . 5 , the cylinder remains un-

deformed ( λ = 1 ) after the voltage is applied, that is the electric

displacement δ induces no deformation. Thus, whether the applied

electric displacement compresses, stretches, or poses no deforma-

tion to the ideal electroactive material depends on the material

constants, which is different from the predictions ( Zhao and Suo,

2008 ) ignoring the influences of the exterior electric field. Interest-

ing phenomena are observed that, when the applied electric dis-

placement δ approaches infinity, the cylinder is almost compressed

to an ultrathin film for β < 0.5, but, on the contrary, is stretched

almost in a linear manner versus δ for β > 0.5. The latter may also

be deduced from the solution to Eq. (40) which is approximately

λ = δ
√ 

2 β( 2 β − 1 ) for β > 0.5 and large δ. In other words, the rel-

ative stretch λ/ δ remains constant as 
√ 

2 β( 2 β − 1 ) irrespective of

the applied electric displacement, as shown in Fig. 1 by the dashed

line for β = 0 . 6 . This property may be utilized to check if β > 0.5

and determine the value of β experimentally. 

Similarly, for electroactive material with β < 0.5 under suf-

ficiently large electric field, it will be compressed dramatically

that the portion of λ2 can be discarded compared to λ−1 . Then
Please cite this article as: Y. Su et al., On buckling of a soft incompres

and Structures (2016), http://dx.doi.org/10.1016/j.ijsolstr.2016.07.008 
q. (40) approximately reduces to λ−1 / 2 = δ
√ 

2 β( 2 β − 1 ) , as de-

icted in Fig. 2 by the dashed line, shows a linear relationship be-

ween λ−1 / 2 and δ for large δ. This provides an effective means to

easure the value of β for β < 0.5. 

The buckling behavior of the cylinder of ideal dielectric elas-

omer is governed by the characteristic Eq. (30) , from which the

ritical stretch λc may be determined as 

c = λc ( κ, n ; β, δ, ν) . (41)

This gives the scaling law between the critical buckling stretch

c and the wave number κ , which implies that the relation λc ∼ κ
or a certain buckling mode n may be uniquely determined once

he radius ratio ν , the electroelastic coupling parameter β , and the

on-dimensional biasing electric displacement δ are fixed. That is,

he scaling of λc ∼ κ with fixed values of β , n , and δ will not

e influenced by the initial shear modulus μ and the permittivity

onstants ɛ 0 , but only relies on the relative thickness of the cylin-

er ν . 

Now, the buckling behavior of the cylinder due to the biasing

lectric field will be investigated through numerical calculations.

xamples are performed according to whether the cylinder is ini-

ially compressed with β = 0 . 4 or stretched with β = 0 . 6 . For ease

f reference, we designate λ0 as the prestretch due to the biasing

lectric displacement δ in the absence of mechanical loads. Varia-

ions of the normalized critical stretch λc / λ0 versus the normalized

ave number κ will be analyzed. All results will be given for the

owest five orders of circumferential buckling modes. 

Firstly, the critical stretch λc / λ0 versus κ is analyzed for a cylin-

er with ν= 0 . 5 and subjected to no biasing electric displacement,

.e., δ = 0 . For this case, the stretch due to δ = 0 is λ0 = 1 as shown

n Fig. 1 . Fig. 3 exhibits the λc / λ0 ∼ κ curves that are similar to the

lassical features of the buckling of a purely elastic cylindrical shell

 Pan and Beatty, 1997; Goriely et al., 2008 ). It can be seen that

he Euler buckling ( n = 1 ) occurs first during compression for slen-

er cylinder with κ < 5.5 while the first barrelling mode ( n = 0 )
sible electroactive hollow cylinder, International Journal of Solids 
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Fig. 2. Plots of λ−1 / 2 versus δ for a hollow cylinder of ideal dielectric elastomer ( α = 0 ) for β = 0 . 4 < 0 . 5 . The dashed line is the asymptote of the solid curve. 

Fig. 3. Plots of the critical stretch λc / λ0 ( λ0 = 1 ) versus κ for a hollow cylinder with ν = 0 . 5 without the stimulus of initial biasing electric displacement ( δ = 0 ). The dashed 

line is the asymptote corresponding to a half-space. 
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Fig. 4. Plots of λc / λ0 versus κ for a range of mode numbers n = 0 , 1 , 2 , 3 , 4 for a hollow cylinder with α = 0 , β = 0 . 4 and ν = 0 . 5 subjected to δ = 2 . The horizontal dashed 

line is the asymptote corresponding to a half-space. 
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becomes dominant for short cylinder with κ > 5.5. Special atten-

tion should be paid to the buckling behavior of short cylinders

with κ > 5.5 for which the mode curves of n = 0 and n = 1 are

so close that a slight additional axial compression is likely to drive

the cylinder from the first barrelling mode into the Euler buck-

ling or some combination of both modes. Both mode curves de-

crease together monotonically to the asymptotic value λc = 0 . 4 4 4 ,

which corresponds to surface instability of a compressed half-

space ( Wilkes, 1955 ). This asymptotic value is different from the

critical compression stretch λc = 0 . 5437 for buckling instability of

a neo-Hookean elastic half-space obtained by Dorfmann and Og-

den (2010) and Biot (1963) who considered a plane-strain state

with a deformation gradient tensor of F = diag [ λλ−1 1 ] . The crit-

ical stretches λc for other modes ( n ≥ 2) are always beneath those

for the first barrelling mode ( n = 0 ) and the Euler buckling mode

( n = 1 ) , implying the requirement of a larger compression load

to induce them. One should notice that for short cylinder with

large κ , multiple solution curves appear ( Pan and Beatty, 1997 ).

These curves should be ignored since the major instability curves

at which instability first occurs are the upper branch curves. 

Figs. 4 and 5 present the effect of the applied electric displace-

ment δ = 2 on the stability of an electroactive cylinder respectively

with ν= 0 . 5 and ν= 0 . 8 for β = 0 . 4 . For λc / λ0 > 1, the cylinder

buckles immediately once an electric displacement δ = 2 is applied

and a tensile mechanical load is necessary to prevent the buckling.

However, only Euler buckling mode ( n = 1 ) is induced for slender

cylinders with κ < 1.35 when ν= 0 . 5 ( Fig. 4 ). In contrast, for cylin-

ders with ν= 0 . 8 , a wider range of wave number (e.g. 0 < κ < 8.27)

will result in immediate buckling due to the electrical load ( λc / λ0 

> 1), but the critical buckling mode varies among n = 1 , n = 2 and

n = 0 versus κ ( Fig. 5 ). As the wave number κ increases such that

λc / λ < 1, the applied electric field is not adequate any more to
0 

t  
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nduce buckling but an additional axial compression is required to

estabilize the cylinder, that is, the cylinder can bear an additional

xial compression until the buckling occurs. In Figs. 4 and 5 , κc 

epresents the transition from unstable to stable configuration for

he initially undeformed cylinder with λ = 1 under the application

f the electric field. It may be deduced that further increasing of

will result in larger values of κc and a larger axial tension is

eeded to prevent instability of the slender cylinder with κ < κc . 

The λc / λ0 ∼ κ curves in Figs. 4 and 5 for various buckling

odes have cross points at certain wave number, which indi-

ates that the hollow cylinder will shift between different buckling

odes as the radius ratio ν or wave number varies. In addition,

arger radius ratios result in more cross points or more frequent

hift of buckling modes. To further investigate this phenomenon,

e extract the wave number corresponding to the cross point of

wo buckling modes in the λc / λ0 ∼ κ plots for a continuous spec-

rum of radius ratio ν , and plot the κ ∼ ν relation in Fig. 6 to

chieve the phase diagram of buckling modes. The κ − −ν plane

s divided into various regions by the buckling mode number n .

he Euler buckling ( n = 1 ) always occurs first as κ increases irre-

pective of the radius ratio ν , and, in general, the Euler buckling

( n = 1 ) is dominant for slender cylinders (small κ) while the first

arrelling mode ( n = 0 ) is dominant for short cylinders (large κ).

or thick cylinders with ν < 0.65, only the first barrelling mode

( n = 0 ) and the Euler buckling mode ( n = 1 ) may occur. More

uckling modes appear as ν exceeds 0.65, and the buckling modes

hift follows the rule of n = 1 → 2 → · · · → n → · · · → 1 → 0 for

 certain value of ν as κ increases, which indicates more com-

licated buckling behavior for thinner cylinders. When the bias-

ng electric displacement δ shifts from 0 to 2, there is almost no

hange in the number of divided regions on the κ ∼ ν diagram,

ut there is only a slight increment in the wave number, implying

hat the applied electric displacement delays the shift of buckling
sible electroactive hollow cylinder, International Journal of Solids 
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Fig. 5. Plots of λc / λ0 versus κ for a range of mode numbers n = 0 , 1 , 2 , 3 , 4 for a hollow cylinder with α = 0 , β = 0 . 4 and ν = 0 . 8 subjected to δ = 2 . 

Fig. 6. Phase diagram of buckling modes: solid – α = 0 , β = 0 . 4 , δ = 0 ; dashed – α = 0 , β = 0 . 4 , δ = 2 . The vertical dotted lines indicate the smallest radius ratio at which 

transition from one buckling mode to another occurs when the axial wave number is not very large. 

Please cite this article as: Y. Su et al., On buckling of a soft incompressible electroactive hollow cylinder, International Journal of Solids 
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Fig. 7. Buckling mode shapes for a hollow cylinder: (a) κ = 0 . 3 , n = 1 , ν = 0 . 5 , q = 1 , (b) κ = 6 , n = 0 , ν = 0 . 5 , q = 2 and (c) κ = 3 , n = 2 , ν = 0 . 8 , q = 1 . 

Fig. 8. Plots of s c versus κ for a hollow cylinder with α = 0 , β = 0 . 4 and ν = 0 . 5 subjected to δ = 0 , 2 , 4 , respectively. The dashed lines are the asymptotes of the respective 

curves. 
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mode as κ increases. In addition, the role of biasing electric field

on delaying the mode shift becomes weaker as ν increases. 

Once κ , R o , R i and δ are prescribed, the critical stretch λc 

and the buckling modes of the cylinder may be determined as

shown in Fig. 7 . The length of the cylinder can be determined by

L = 

qπR o 
κ λ−3 / 2 

cr . 

From the results presented above, we can expect that for κ →
∞ , the first barrelling mode ( n = 0 ) occurs first during compres-
Please cite this article as: Y. Su et al., On buckling of a soft incompres

and Structures (2016), http://dx.doi.org/10.1016/j.ijsolstr.2016.07.008 
ion. From Eq. (30) for ideal dielectric elastomers ( α = 0 ) , letting

→ ∞ and n = 0 , λ approaches a value which is the positive root

f the equation 

( 1 + 2 β) 
(
λ9 / 2 + λ3 + 3 λ3 / 2 − 1 

)
− δ2 ( 1 − 2 β) 

2 
(
λ + λ5 / 2 

)
= 0 , 

(42)
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Fig. 9. Plots of λc / λ0 versus κ for a range of mode numbers n = 0 , 1 , 2 , 3 , 4 for a hollow cylinder with α = 0 , β = 0 . 6 and ν = 0 . 5 subjected to δ = 2 . 

Fig. 10. Plots of s c versus κ for a hollow cylinder with α = 0 , β = 0 . 6 and ν = 0 . 5 subjected to δ = 0 , 2 , 4 , respectively. 

a  

m  

t  

e

λ  

w  

c  

s

 

t  
nd is irrespective of ν . It shows again that for ideal electroactive

aterial with β = 0 . 5 , biasing electric field imposes no effect on

he buckling behavior. Furthermore, if omitting the effect of biasing

lectric fields ( δ = 0 ) , we obtain 

9 / 2 + λ3 + 3 λ3 / 2 − 1 = 0 , (43)
Please cite this article as: Y. Su et al., On buckling of a soft incompres

and Structures (2016), http://dx.doi.org/10.1016/j.ijsolstr.2016.07.008 
ith the positive real root λ = 0 . 4 4 4 , the same as the critical

ompression for buckling instability of a neo-Hookean elastic half-

pace ( Wilkes, 1955 ), just as expected. 

The applied critical compressive load which induces buckling of

he cylinder may be determined according to Eq. (38) . Fig. 8 il-
sible electroactive hollow cylinder, International Journal of Solids 
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Fig. 11. Plots of λ versus δ for α = 0 and β = 0 . 4 , 0 . 5 , 0 . 6 . 
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lustrates the dependence of the critical compressive load s c on

the wave number κ for various applied electrical displacement δ
based on the energy function ( 31 ) with α = 0 , β = 0 . 4 and a ra-

dius ratio ν = 0 . 5 . It is seen again that, as κ increases, the Eu-

ler buckling ( n = 1 with black segment or markers) occurs first

and then follows the first barrelling mode ( n = 0 with red seg-

ment or markers). The critical compressive load increases mono-

tonically to an asymptotic value which corresponds to the critical

load under which the surface of the electroactive half-space will

become unstable. For the purely mechanical loading case ( δ = 0 ),

the s c ∼ κ curve is always above zero which implies that an ax-

ial compressive load is needed to buckle the hollow cylinder no

matter how slender the cylinder is. Once the electrical load is ap-

plied, part of the s c ∼ κ curve for thin cylinder with κ < κc is

below zero while the remaining section of the curve is above zero.

That is, for slender cylinder with small κ , an electric field only will

buckle the cylinder and a tensile force is needed to prevent the

buckling, while, for thick cylinder with large κ , the applied electric

field will not buckle the cylinder and a compressive load is allowed

until the buckling occurs, coinciding with the results presented in

Figs. 4 and 5 . As the applied electric displacement δ becomes large

enough, the critical loading s c is always below zero for all values

of κ , see the curve of δ = 4 for example. This means that the ap-

plied electric displacement buckles the cylinder irrespective of its

length and a tensile loading is always needed to keep its stabil-

ity. These results indicate that the ideal dielectric cylinder (with

α = 0 , β = 0 . 4 here) becomes more apt to buckle when the applied

electric field gets stronger. 

Fig. 9 exhibits the λc / λ0 ∼ κ curves of an ideal electroactive

cylinder with ν = 0 . 5 due to an applied electric displacement δ = 2

for β = 0 . 6 , while Fig. 10 displays the corresponding critical axial

load s c as a function of κ for various δ. Reminder that, for ideal

electroactive material with α = 0 , β = 0 . 6 , the applied electric dis-

placement always stretches the cylinder with λ0 > 1, that is, the

applied electric displacement stabilizes the hollow cylinder. As a
 λ  

Please cite this article as: Y. Su et al., On buckling of a soft incompres

and Structures (2016), http://dx.doi.org/10.1016/j.ijsolstr.2016.07.008 
esult, the critical stretch λc / λ0 causing buckling is always smaller

han 1 (see Fig. 9 ), which indicates that the applied critical com-

ressive load should be large enough to encounter first the pre-

trech by electric displacement δ = 2 and thereafter to make buck-

ing occur. Accordingly, the critical compressive load s c is always

bove zero, and, for a given κ , larger s c is needed to buckle the

ollow cylinder in the presence of a larger electric field. Therefore,

he applied electric field considered here plays a positive role and

he stability is well enhanced if the cylinder is made of ideal elec-

roactive material with β > 0.5. 

Figs. 2 –10 suggest that, for soft electroactive hollow cylinder in-

luding the effects of exterior electric field, whether an increas-

ng electric field poses stabilizing or destabilizing influence on the

ylinder depends on the selection of the electroelastic coupling pa-

ameters. This finding is consistent with the existing theoretical

redictions ( Dorfmann and Ogden, 2010, 2014 ). 

.2. Excluding exterior electric field 

To make a comparison study on the effects of exterior electric

eld, we examine here the buckling behavior of electroactive hol-

ow cylinders without considering the electric field in vacuum out-

ide the cylinder. In this circumstance, the boundary conditions re-

uce to τrr = 0( r = r o , r i ) in the axisymmetric pre-deformed state,

rom which the effective hydrostatic pressure is found to be p =
λ−1 . Therefore, the boundary conditions at the end faces τzz =
g( z = 0 , l ) give rise to 

 = g/μ = −λ2 + λ−1 − 2 βδ2 . (44)

This equation suggests that the stretch due to the applied

echanical and electrical loads is independent of α no matter

hether the cylinder is made of ideal electroactive material or not.

he stretch of the cylinder due to the applied electric displacement

an be obtained from Eq. (44) by setting s = 0 , i.e., 

2 − λ−1 + 2 βδ2 = 0 . (45)
sible electroactive hollow cylinder, International Journal of Solids 
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Fig. 12. Plots of λc / λ0 versus κ for mode numbers n = 0 , 1 for a hollow cylinder with α = 0 , β = 0 . 4 and ν = 0 . 5 subjected to δ = 0 . 5 , 1 , respectively. 
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Fig. 11 plots the stretch λ as a function of the normalized bias-

ng electric displacement δ according to Eq. (45) for hollow cylin-

ers made of dielectric elastomer (not necessarily ideal as just

oted above) with various parameter β . Similar to the analyses

n Su et al. (2016) , the applied electric displacement always com-

resses the hollow cylinder in the absence of exterior electric field,

hich is quite different from the case including the effects of exte-

ior electric field (see Fig. 1 ). In addition, the same applied voltage

ompresses the cylinder more dramatically for a larger β . 

Since the exterior electric field is not considered, the poten-

ial φ∗
m 

( m = o, i ) in the vacuum is not included in the bound-

ry conditions for the perturbed motion. Therefore, the solution

o φ∗
m 

( m = o, i ) in Eq. (29) is discarded, and the characteristic

quation (30) governing the buckling behavior of the cylinder is

educed to the one involving eight unknowns. In order to directly

ompare the results to those presented in Section 5.1 , we consider

gain hereafter the buckling of the cylinders made of ideal elec-

roactive materials with β = 0 . 4 and α = 0 for the case excluding

he effects of exterior electric field. 

Fig. 12 shows the variations of the normalized critical stretch

c / λ0 against κ for selected values of δ = 0 . 5 and δ = 1 . Only the

uler buckling mode ( n = 1 ) and the first barrelling mode ( n = 0 )

re discussed here, because, for thick hollow cylinders with ν =
 . 5 , the curves for other higher order modes are always below

hese two modes. It is seen that the buckling behavior of the cur-

ent hollow cylinder is quite different from that including the ef-

ects of exterior electric field. For the case of ignoring the exterior

lectric field, the critical stretch λc / λ0 for the first barrelling mode

 n = 0 ) decreases with the applied voltage δ for small values of κ
ut increases for large values of κ , while that for the Euler buck-

ing mode ( n = 1 ) always increases with the applied voltage δ ( Fig.

2 ). This indicates that the cylinder with large κ will be more vul-

erable to instability when subject to a higher-level applied volt-

ge. In addition, for the Euler buckling mode ( n = 1 ), the critical

tretch λc / λ always decreases starting from 1 as κ increases when
0 s  

Please cite this article as: Y. Su et al., On buckling of a soft incompres

and Structures (2016), http://dx.doi.org/10.1016/j.ijsolstr.2016.07.008 
he applied electric field is present. This indicates that mere appli-

ation of any electric field will not destabilize the hollow cylinder

f any thickness if no mechanical load is applied. It is not difficult

o understand this because the exterior electric field is ignored so

hat no total stress occurs in the cylinder as is deduced from the

oundary conditions. This conclusion can also be made from Fig.

3 which depicts the associated critical compressive load s c ver-

us κ for various applied electrical displacement. The critical com-

ressive load s c is always positive, suggesting that an additional

xial compressive load is required to induce buckling. Larger ap-

lied electrical displacement requires smaller additional compres-

ive load to buckle the cylinder. In general, from the above compar-

son between Sections 5.1 and 5.2 , the exterior electric field always

lays a destabilizing effect, and, this is independent of the value of

. 

Similarly, for the case of excluding the exterior electric field, for

deal dielectric elastomers ( α = 0 ) as κ → ∞ , the relation between

ritical stretch λc and electric displacement δ is given by the fol-

owing equation 

9 / 2 + λ3 + 3 λ3 / 2 − 1 + βδ2 
(
2 λ4 + 6 λ5 / 2 − 4 βδ2 λ2 − 4 λ

)
= 0 , 

(46) 

hich also corresponds to the bifurcation equation of the half -

pace. 

. Conclusions 

In conclusion, we have applied the general nonlinear the-

ry of electroelasticity and the associated linear incremental the-

ry proposed by Dorfmann and Ogden ( Dorfmann and Ogden,

0 06; Ogden, 20 09 ) to study the buckling behavior of soft incom-

ressible electroactive hollow cylinders subjected to end thrust.

nalytical solutions suggest that whether the applied electric

eld compresses or elongates the cylinder depends on the inclu-

ion/exclusion of exterior electric field and the electromechanical
sible electroactive hollow cylinder, International Journal of Solids 
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Fig. 13. Plots of s c versus κ for a hollow cylinder with α = 0 , β = 0 . 4 and ν = 0 . 5 subjected to δ = 0 , 0 . 5 , 1 , respectively. 
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coupling parameters of the material. In the absence of any biasing

field, the general bifurcation relation is identical to that for purely

elastic cylinders. Numerical results have shown that the stability

is influenced significantly by the biasing fields, material constants,

geometrical configuration of the hollow cylinder as well as the ex-

terior electric field. In addition, the instability phenomena of di-

electric elastomer also depend highly on material models ( Díaz-

Calleja et al., 2010 ), which is not discussed in the present work. A

phase diagram has been further constructed to clearly distinguish

the dominant buckling modes and to show the transition between

them in the κ − −ν plane. All the results may render references

for guiding the design and fabrication of tubular electroactive elas-

tomer actuators. 
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Appendix A. Basic equations of nonlinear electroelasticity 

A.1. Finite electroelasticity 

Consider a continuous electroelastic body subjected to a static

finite deformation. The naturally undeformed configuration is de-

noted by B r and its boundary by ∂B r , with N being the outward

unit normal vector. Let B t denote the corresponding finitely de-

formed configuration and ∂B t the deformed boundary with the

outward unit normal vector n . For an incompressible material, the

nominal stress T and Lagrangian electric field E during deforma-
l 

Please cite this article as: Y. Su et al., On buckling of a soft incompres
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ion are given by 

 = F −1 τ = 

∂W 

∂F 
− p F −1 , E l = F T E = 

∂W 

∂ D l 

, (A1)

here F = Grad χ is the deformation gradient with χ denoting a

ontinuous and twice differentiable vector function that maps the

otion of a material particle at X in B r to x in B t , i.e., x = χ( X , t )

ith t being the time variable, τ the total Cauchy stress tensor,

 a Lagrange multiplier associated with the incompressibility con-

traint, and E l and D l respectively the Lagrangian counterparts of

he electric field vector E and the electric displacement vector D .

he superscripts ‘ −1’ and ‘T’ throughout this paper stand for in-

erse and transpose of a tensor. In Eq. (A1) , W ≡ W ( F, D l ) is the en-

rgy density function defined in the reference configuration, which,

n general, is a function of the following six invariants 

I 1 = tr c , I 2 = 

1 

2 

[
( tr c ) 

2 − tr ( c 2 ) 
]
, I 3 = det c , 

I 4 = D l · D l , I 5 = D l · (c D l ) , I 6 = D l · ( c 2 D l ) , 
(A2)

here c = F T F is the right Cauchy–Green tensor, and I 3 = 1 for in-

ompressible materials. 

In the absence of body forces, free charges and currents, the

quations of equilibrium may be written as 

iv τ = 0 , curl E = 0 , div D = 0 , (A3)

f the electric field is assumed to be quasi-static. For a material

ody in vacuum, all these physical quantities at the boundary ∂B t ,

f in absence of surface charges, are required to satisfy 

n = t a + τ ∗n , ( E − E 

∗) × n = 0 , ( D − D 

∗) · n = 0 , (A4)

here t a is the applied mechanical traction per unit area of ∂B t ,
∗ = ε 0 [ E 

∗
� E 

∗ − 1 
2 ( E 

∗ · E 

∗) I ] is the Maxwell stress, E ∗ and D ∗ are

espectively the electric field vector and electric displacement vec-

or of the electric field in vacuum, and ε 0 = 8 . 85 pF /m is the per-

ittivity of vacuum. E ∗ and D ∗ are connected by D 

∗ = ε E 

∗ and
0 

sible electroactive hollow cylinder, International Journal of Solids 
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, 
atisfy 

url E 

∗ = 0 , div D 

∗ = 0 . (A5)

.2. Incremental field theory 

If a perturbation ˙ x ( X , t ) along with an increment in the elec-

ric displacement ˙ D l is superimposed upon the static finite defor-

ation, the incremental displacement may be expressed as u = ˙ x ,

here the overdot denotes incremental quantities. According to

he incremental field theory ( Dorfmann and Ogden, 2006; Ogden,

009 ), the linear incremental constitutive equations for incom-

ressible isotropic electroactive materials are 

˙ 
 0 = A 0 H + �0 ̇

 D l0 + pH − ˙ p I , ˙ E l0 = �T 
0 H + K 0 ̇

 D l0 , (A6)

here ˙ T 0 = F ̇ T , ˙ E l0 = F −T ˙ E l , ˙ D l0 = F ̇ D l are the ‘push forward’ ver-

ions of ˙ T , ˙ E l , ˙ D l respectively, and H = grad u is the displacement

radient. A 0 , �0 , and K 0 are the effective electroelastic moduli ten-

ors, whose Eulerian expressions are given by 

 0 piq j = A 0 q jpi = F pαF qβ
∂ 2 W 

∂ F iα∂ F jβ
, �0 piq = �0 ipq = F pαF −1 

βq 

∂ 2 W 

∂ F iα∂ D lβ
, 

K 0 i j = K 0 ji = F −1 
αi 

F −1 
β j 

∂ 2 W 

∂ D lα∂ D lβ
. (A7) 

For incompressible materials, the incremental motion is also

ubjected to the following incompressibility constraint 

iv u = tr H = 0 . (A8)

The incremental forms of the governing equations ( A3 ) are 

iv ̇ T 0 = 0 , curl ̇ E l0 = 0 , div ̇ D l0 = 0 . (A9)

Accordingly, the incremental form of boundary conditions for a

aterial body in vacuum are 

˙ E l0 − ˙ E 

∗ − H 

T E 

∗)× n = 0 , 
(

˙ D l0 + H D 

∗ − ˙ D 

∗) · n = 0 , (A10)

˙ 
 

T 
0 
n = 

˙ t A 0 + ˙ τ ∗n − τ∗H 

T n , (A11)

here ˙ t A 0 d 

a = 

˙ t A d 

A , with t A being the applied mechanical traction

er unit area of ∂B r , d 

a and d 

A are respectively the infinitesimal

rea elements in the deformed and reference configurations. Here,

he incremental fields ˙ E 

∗ and 

˙ D 

∗ are related by ˙ D 

∗ = ε 0 ̇ E 

∗ and sat-

sfy 

url ̇ E 

∗ = 0 , div ̇ D 

∗ = 0 . (A12)

The incremental form of the Maxwell stress ˙ τ ∗ in Eq. (A11) is

iven by 

˙ ∗ = ε 0 
[

˙ E 

∗
� E 

∗ + E 

∗
� ˙ E 

∗ −
(
E 

∗ · ˙ E 

∗)I ], (A13) 

nd it is easy to show that div ̇ τ∗ = 0 . 

ppendix B. Components of the effective electroelastic moduli 

ensors 

According to Dorfmann and Ogden’s theory ( Dorfmann and Og-

en, 2010 ), the following non-zero components of the effective

lectroelastic moduli tensors can be derived for the specified pre-

eformation state: 

A 01111 = 2 λ2 
{ 

2 W 22 

(
1 + λ−3 

)2 + λ−1 
[
4 W 12 λ

−1 + W 1 λ
−2 + 2 W 11 λ

−2 

+ 4 W 12 λ
−4 + W 2 

(
1 + λ−3 

)]}
, 

A 01122 = 8 W 12 

(
1 + λ−3 

)
+ 4 λ2 

[ 
( W 11 + W 2 ) λ

−4 + W 22 

(
1 + λ−3 

)2 
] 
,

A 01133 = 2 λ3 
{

W 12 

(
2 + 6 λ−3 

)
+ 2 λ−1 

[
( W 11 + W 2 ) λ

−1 

+ 2 W 22 

(
1 + λ−3 

)]
+ 2 D 

2 
z 

[
2 W 26 

(
1 + λ−3 

)
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+ λ−2 
(
2 W 16 + W 25 + W 15 λ

−2 + W 25 λ
−3 
)]}

, 

 03333 = 2 λ4 
{

2 W 11 + 8 W 12 λ
−1 + W 1 λ

−2 + 8 W 22 λ
−2 

+ 2 W 2 λ
−3 + 2 D 

4 
z 

(
4 W 66 + 4 W 56 λ

−2 + W 55 λ
−4 
)

+ D 

2 
z 

[
8 W 16 + 16 W 26 λ

−1 + λ−2 ( 4 W 15 + 6 W 6 

+ 8 W 25 λ
−1 + W 5 λ

−2 
)]}

, 

A 01313 = 2 λ−1 
(
W 1 + D 

2 
z W 6 + W 2 λ

−1 
)
, A 01331 = −2 λW 2 + 2 D 

2 
z W 6 λ

−1 , 

A 03131 = 2 λ2 
{

W 1 + W 2 λ
−1 + D 

2 
z 

[
W 5 λ

−2 + W 6 

(
2 + λ−3 

)]}
, 

A 01212 = 2 λ
(
W 2 + W 1 λ

−2 
)
, A 01221 = −2 W 2 λ

−2 , 

�0113 = 4 D z λ
3 
{

W 26 

(
1 + λ−3 

)
+ λ−2 

[
W 16 + W 25 

(
1 + λ−3 

)
+ λ−2 

(
W 15 + W 24 + W 14 λ

−2 + W 24 λ
−3 
)]}

, 

�0131 = 2 D z λ
2 
(
W 6 + W 5 λ

−2 + W 6 λ
−3 
)
, 

�0333 = 4 D z λ
4 
{

W 16 + D 

2 
z 

[
2 W 66 + 3 W 56 λ

−2 

+ λ−4 
(
2 W 46 + W 55 + W 45 λ

−2 
)]

+ λ−1 
[
2 W 26 + λ−1 

(
W 15 + 2 W 6 + 2 W 25 λ

−1 

+ W 14 λ
−2 + W 5 λ

−2 + 2 W 24 λ
−3 
)]}

, 

K 011 = 2 λ
(
W 4 + W 5 λ

−1 + W 6 λ
−2 
)
, 

K 033 = 2 λ4 
{
λ−2 
(
W 6 + W 5 λ

−2 + W 4 λ
−4 
)

+ 2 D 

2 
z 

[
W 66 + 2 W 56 λ

−2 

+ λ−4 
(
2 W 46 + W 55 + 2 W 45 λ

−2 + W 44 λ
−4 
)]}

, 

here W i j = ∂ 2 W/∂ I i ∂ I j . 

ppendix C. Elements of d ij 

d 14 = 

(
c 11 + μλ−1 

)[ n 

r o 
J ′ n ( η4 r o ) − n 

r 2 o 

J n ( η4 r o ) 

]

+ c 12 
1 

r o 

[ 
−n J ′ n ( η4 r o ) + 

n 

r o 
J n ( η4 r o ) 

] 
, 

d 18 = 

(
c 11 + μλ−1 

)[ n 

r o 
Y ′ n ( η4 r o ) − n 

r 2 o 

Y n ( η4 r o ) 

]

+ c 12 
1 

r o 

[ 
−n Y ′ n ( η4 r o ) + 

n 

r o 
Y n ( η4 r o ) 

] 
, 

d 1 j = −
(
c 11 + μλ−1 

)
Z ′′ n 
(
η j r o 
)

+ c 12 
1 

r o 

[
n 

2 

r o 
Z n 
(
η j r o 
)

− Z ′ n 
(
η j r o 
)]
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(
c 13 k ζ1 j + e 31 k ζ2 j − ζ3 j 

)
Z n 
(
η j r o 
)
, 

d 24 = −c 661 J 
′′ 

n ( η4 r o ) −
(
c 662 + μλ−1 

) 1 

r o 

[
n 

2 

r o 
J n ( η4 r o ) − J ′ n ( η4 r o ) 

]

d 28 = −c 661 Y 
′′ 

n ( η4 r o ) −
(
c 662 + μλ−1 

) 1 

r o 

[
n 

2 

r o 
Y n ( η4 r o ) − Y ′ n ( η4 r o ) 

]

d 2 j = c 661 

[
n 

r o 
Z ′ n 
(
η j r o 
)

− n 

r 2 o 

Z n 
(
η j r o 
)]

−
(
c 662 + μλ−1 

) 1 

r o 

[ 
−n Z ′ n 

(
η j r o 
)

+ 

n 

r o 
Z n 
(
η j r o 
)] 

, 

d 34 = −
(

c 551 + μλ−1 − 4 β2 

ε 0 
D 

2 
z 

)
k 

n 

r o 
J n ( η4 r o ) , 

d 38 = −
(

c 551 + μλ−1 − 4 β2 

ε 0 
D 

2 
z 

)
k 

n 

r o 
Y n ( η4 r o ) , 
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(
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(
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)
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(
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d 64 = 

(
c 11 + μλ−1 

)[ n 

r i 
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−n Y ′ n ( η4 r i ) + 
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Y n ( η4 r i ) 

] 
, 

d 6 j = −
(
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 810 = ε 0 
D z 

ε 
I ′ n ( k r i ) , 

d 910 = − n 

r i 
I n ( k r i ) , d 1010 = ε 0 I 

′ 
n ( k r i ) , 

here, j = 1 , 2 , 3 , 5 , 6 , 7 , for j = 1 , 2 , 3 , Z(·) = J(·) , for

j = 5 , 6 , 7 , Z(·) = Y (·) ; and the notations η j+4 = η j and

n ( j+4 ) = ζn j ( j, n = 1 , 2 , 3 ) have been adopted. 
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