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a b s t r a c t 
In this paper, the wave propagation in a finitely pre-deformed elastic half-space overlain by a thin coat- 
ing layer (or surface film) is considered. The coated half-space is subjected to a particular uniform pre- 
deformation such that it is kept to be tractions-free on its surface. The first-order effective boundary 
conditions are introduced to approximate the effect of the overlying surface film. Then the Stroh formal- 
ism and Barnett-Lothe theory are adopted to study the surface wave characteristics. In particular, general 
criteria are established to identify the existence of surface waves of different modes by taking advan- 
tage of the surface impedance matrix. As an illustration, surface waves in a coated soft half-space under 
biasing field are investigated. Both the surface film and the half-space are modeled by the Hadamard 
strain energy function for soft isotropic materials. Explicit conditions for the existence of different sur- 
face wave modes (including the first-order Rayleigh waves, second-order Rayleigh waves and Love waves) 
are obtained, and the corresponding wavenumber ranges are also determined. Our theoretical analysis 
and numerical simulations show that both the surface film and the pre-deformation could remarkably 
affect the propagation of surface waves as well as the stability of the coated elastic half-space. Particu- 
larly, it is proved that, distinguishing from Rayleigh waves, the velocity of Love waves varies linearly with 
pre-stretch for a given frequency, a striking feature which is highly desirable in the sensor designs. 

© 2017 Elsevier Ltd. All rights reserved. 
1. Introduction 

Guided wave propagation in an elastic substrate coated with a 
thin surface layer has been investigated intensively by researchers 
with diverse applications in earth science, mechanical engineer- 
ing, and solid state physics, to name a few. The substrate could be 
modeled as a semi-infinite medium if it is much thicker than the 
wavelength of interest. Even so, the wave-motion problem of an 
elastic half-space with a coated surface layer is still more compli- 
cated than that of a homogeneous half-space, and hence it has al- 
ways been a subject of research interest ( Brekhovskikh and Godin, 
1990; Nayfeh, 1995; Wang et al., 2005 ). For example, by apply- 
ing the Stroh formalism ( Stroh, 1958, 1962 ), Darinskii (1998) sys- 
tematically and theoretically investigated the leaky waves in an 
anisotropic layered half-space. 

If the coating film is very thin as compared to the wavelength 
of interest, its effect on the wave motion in the coated half-space 
can be approximated by introducing the so-called effective bound- 
ary conditions for the half-space, which can greatly simplify the 
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problem. The elastic layer/film could be approximately modeled by 
the first-order effective boundary conditions ( Mindlin, 1963; Tier- 
sten, 1969; Rokhlin and Wang, 1991; Bövik, 1994 ), the second- 
order ones ( Niklasson et al., 20 0 0a, 20 0 0b ), or even the ones of 
an arbitrary order ( Ting, 2007 ). As an extension to the elastic case, 
Johansson and Niklasson (2003) obtained the first- and second- 
order effective boundary conditions for a coated piezoelectric half- 
space. This simplified film-substrate model can also be utilized to 
characterize the surface/interface effect. For example, Gurtin and 
Murdoch’s surface elasticity theory ( Gurtin and Murdoch, 1975 ) 
with zero residual surface tension (denoted as the GM theory here- 
after) can be directly obtained from the effective boundary con- 
ditions (denoted as the MT conditions hereafter) ( Mindlin, 1963; 
Tiersten, 1969 ) by appropriately defining the surface parameters 
in the GM theory. In a similar way, Chen (2011) established the 
theory of surface piezoelectricity by making use of the power se- 
ries expansion of the transfer matrix, which correlates the state 
variables on the upper surface with those on the lower surface 
of the surface layer. Recently, Chen et al. (2014) further obtained 
the effective boundary conditions for a cylinder and explored the 
wave propagation behavior in a transversely isotropic elastic cylin- 
der with surface effect. 

http://dx.doi.org/10.1016/j.ijsolstr.2017.08.012 
0020-7683/© 2017 Elsevier Ltd. All rights reserved. 
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Environmental factors, such as temperature variation, mechan- 

ical constraints, and external electromagnetic field, could signif- 
icantly affect the properties and functions of structures or de- 
vices. For example, temperature change or mounting force may 
cause deformation and stress in a piezoelectric resonator and 
make the resonant frequency deviate from its designed value 
( Tiersten and Sinha, 1979 ). The performance of underwater sonars 
or hydrophone transducers depends sensitively on the hydrostatic 
pressure ( Wilson, 1988 ). On the other hand, environmental factors 
can be varied purposedly so that certain desired functionality or 
performance of a structure/device can be achieved. For example, 
soft acoustic devices, which have attracted considerable interest in 
recent years, are highly tunable by applying biasing fields since 
they can undergo large deformation in reversible manners under 
low external stimuli ( Su et al., 2016 ). Specifically, finite deforma- 
tion induced by external loading has been used to actively control 
the static and dynamic responses of soft metamaterials ( Bertoldi 
et al., 2008; Galich et al., 2017 ). Moreover, the change in environ- 
mental factors may be detected quantitatively by means of guided 
waves if their dependence on environmental parameters is known. 
For example, the guided circumferential waves were explored to 
self-sense the soft electroactive cylindrical devices under biasing 
field ( Wu et al., 2017 ). Thus, investigation of wave motions in elas- 
tic media under biasing fields is pivotal to many important ap- 
plications. For a coated elastic half-space, under the assumption 
of plane-strain deformation, Steigmann and Ogden modeled a de- 
formed thin surface film as an extensible rod and obtained the 
effective boundary conditions in the static ( Steigmann and Og- 
den, 1997 ) and dynamic ( Ogden and Steigmann, 2002 ) cases, re- 
spectively, for the underlying half-space. Note that, in the dynamic 
case, both the bending stiffness and the rotatory inertia were fur- 
ther considered to investigate the propagation of Rayleigh waves. 
While these studies are very valuable, the procedure presented by 
Ogden and Steigmann is slightly complicated without giving a de- 
tailed discussion on the existence and mode multiplicity of surface 
waves. Here, by existence, we mean that there exists a subsonic 
surface wave whose velocity is smaller than the so-called ‘limiting 
speed’ v L ( Chadwick and Smith, 1977 ), which will be defined later 
in this paper. 

In the present work, the general theory of incremental elas- 
tic motions superimposed on a finite deformation ( Dorfmann and 
Ogden, 2005, 2010 ) is employed to investigate the effect of arbi- 
trary finite biasing fields on the propagation behavior of surface 
waves in a coated elastic half-space. The effective boundary con- 
ditions which approximate the effect of a thin surface film un- 
der uniform pre-deformation are obtained. Based on the Stroh for- 
malism ( Stroh, 1958, 1962 ) and the Barnett-Lothe theory ( Barnett 
and Lothe, 1974, 1985; Lothe and Barnett, 1976 ), the equation 
governing surface waves in a deformed coated half-space is de- 
rived in matrix form. Then, by using the properties of the surface 
impedance matrix ( Ingebrigtsen and Tonning, 1969; Barnett and 
Lothe, 1985 ), the criteria for the existence of various surface waves 
are established. The wave motion in an equi-biaxially pre-stretched 
isotropic elastic half-space with coating film is investigated both 
theoretically and numerically. The explicit conditions for the exis- 
tence of various surface waves, including the first-order Rayleigh 
waves, second-order Rayleigh waves (also called as Sezawa waves 
( Sezawa and Kanai, 1935; Tiersten, 1969 )), and Love waves, are es- 
tablished. The second-order Rayleigh waves are of significant im- 
portance since they have a larger output signal amplitude, higher 
propagation velocity, and larger electro-mechanical coupling pa- 
rameter (for piezoelectric materials) as compared to the classical 
Rayleigh waves ( Oliver and Ewing, 1957; Elliott et al., 1978; Emane- 
toglu et al., 2004; Wang et al., 2006a, 2006b; Du et al., 2008 ). 

This paper is organized as follows. In Section 2 , we introduce 
the general theory of an incremental elastic motion superimposed 

Fig. 1. Deformation of a continuous body and the three different configurations. 
on a finite deformation. In Section 3 , we obtain the characteris- 
tic dispersion equation for infinitesimal surface waves propagating 
in a deformed coated half-space. The criteria for the existence of 
surface waves are established. Then, the wave motion in a coated 
half-space made of isotropic Hadamard material is investigated in 
Section 4 . The explicit conditions for the existence of surface waves 
of different modes and the corresponding wavenumber ranges are 
derived. Numerical examples are presented in Section 5 , showing 
that both the biasing fields and the coating film could significantly 
affect the behavior of the surface waves. Results also indicate that 
the coating film could be utilized to tune the stability of the half- 
space. Conclusions are drawn in Section 6 . Some supplementary 
materials are provided in Appendices A , B , and C , along with a list 
of symbols in Appendix D for easy reference. 
2. Nonlinear elasticity and theory of incremental fields – an 
overview 

We first consider a finite static deformation of a soft elastic 
body, which occupies, in the three-dimensional Euclidean space, a 
region B r in the undistorted reference configuration ( Fig. 1 ). The 
boundary of the body in the reference configuration is denoted as 
∂B r , with its outward normal being N r . Let X be the position vector 
of a generic material particle in the reference configuration, which 
moves to a new position x via a smooth motion x = U(X ) . Accord- 
ingly, the whole body deforms into the initial configuration, de- 
noted by B 0 , with boundary ∂B 0 and outward normal N 0 . The de- 
formation gradient of the static motion is defined as F = Grad U = 
∂ x /∂ X , and the ratio between the infinitesimal volume elements 
defined in the two configurations is J = det F . Next, we consider an 
infinitesimal dynamic deformation u = u ( x , t ) superimposed on the 
static finite deformation x = U(X ) . The whole body will occupy a 
region B t in the current configuration, with boundary ∂B t and the 
associated outward normal n . The superimposed field is taken to 
be infinitesimal so that the current configuration and the initial 
configuration can be approximately regarded as undistinguishable. 

The constitutive equations for the incremental field are 
( Dorfmann and Ogden, 2010 ) 
˙ K 0 i j = A 0 i jks u s,k (i, j, k, s = 1 , 2 , 3) , (1) 

where the subscript comma denotes differentiation with respect to 
the coordinate variable that follows and the superimposed dot de- 
notes the incremental quantities; ˙ K 0 i j is the incremental nominal 
stress tensor after the ‘push forward’ operation; A 0 ijks is the effec- 
tive elastic tensor with the major symmetry A 0 ijks = A 0 ksij , but with- 
out the minor symmetry, i.e. A 0 ijks ̸ = A 0 jiks . Einstein’s convention 
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for summation over repeated indices is employed throughout the 
paper unless stated otherwise. 

The effective elastic tensor A 0 ijks is given by ( Dorfmann and Og- 
den, 2010 ) 
A 0 i jks = J −1 F iαF kβ ∂ 2 $

∂ F jα∂ F sβ (2) 
where $= $( F ) is the energy density function per unit volume in 
B r . The effective elastic tensor is assumed to satisfy the following 
strong ellipticity condition ( Chadwick and Smith, 1977 ) 
A 0 i jks v i v k w j w s > 0 , ∀ nonzero real vectors v , w . (3) 

In the absence of body forces, the equations of motion for the 
incremental field are ( Dorfmann and Ogden, 2010 ) 
˙ K 0 i j,i = ρu j,tt (4) 

where ρ is the mass density in the current configuration. The re- 
lation between ρ and the mass density in the reference configura- 
tion, ρr , is ρ = J − 1 ρr . 

By defining the incremental nominal stress vectors as follows 
τ1 = 

⎧ 
⎨ 
⎩ 

˙ K 011 
˙ K 012 
˙ K 013 

⎫ 
⎬ 
⎭ , τ2 = 

⎧ 
⎨ 
⎩ 

˙ K 021 
˙ K 022 
˙ K 023 

⎫ 
⎬ 
⎭ , τ3 = 

⎧ 
⎨ 
⎩ 

˙ K 031 
˙ K 032 
˙ K 033 

⎫ 
⎬ 
⎭ (5) 

the motion Eq. (4) can be rewritten as 
τ1 , 1 + τ2 , 2 + τ3 , 3 = ρu ,tt (6) 
and the constitutive Eq. (1) as 
τ1 = ˆ C 1 u , 1 + ̂  C 2 u , 2 + ̂  C 3 u , 3 
τ2 = C 1 u , 1 + C 2 u , 2 + C 3 u , 3 
τ3 = ⌣ 

C 1 u , 1 + ⌣ C 2 u , 2 + ⌣ C 3 u , 3 (7) 
where 
C 1 i j = A 02 i 1 j , C 2 i j = A 02 i 2 j , C 3 i j = A 02 i 3 j 
ˆ C 1 i j = A 01 i 1 j , ˆ C 2 i j = A 01 i 2 j , ˆ C 3 i j = A 01 i 3 j 
⌣ 
C 1 i j = A 03 i 1 j , ⌣ 

C 2 i j = A 03 i 2 j , ⌣ 
C 3 i j = A 03 i 3 j (8) 

3. Surface waves in a coated anisotropic half-space 
3.1. Stroh formalism 

Let’s consider the problem of wave propagation in an elas- 
tic half-space with a coating surface film, both being assumed 
to be arbitrarily anisotropic. As shown in Fig. A1 in Appendix A , 
a Cartesian coordinate system ( x 1 , x 2 , x 3 ) is attached to the de- 
formed coated half-space, with the origin located on the bottom of 
the coating film and the x 2 -axis pointing into the half-space and 
perpendicular to the interface. We consider the generalized two- 
dimensional problems characterized by ∂ / ∂ x 3 = 0. For plane waves 
propagating in the x 1 direction with velocity v , the displacement 
field takes the following form 
u = a exp ( i kz ) (9) 
where i = √ 

−1 , z = x 1 − v t + p x 2 , k ( ≥0) is the wavenumber, and 
a is the unknown amplitude vector. By substituting Eq. (9) into 
Eq. (6) and noticing ∂ / ∂ x 3 = 0, we obtain 
(
τ1 − i kρv 2 u )

, 1 + τ2 , 2 = 0 (10) 
Now we introduce the following stress potential vector 

! = b exp ( i kz ) (11) 
which generates the incremental nominal stress vectors τ1 and τ2 
through 
τ2 = !, 1 , τ1 − i kρv 2 u = −!, 2 (12) 

Thus, Eq. (10) is satisfied automatically. From Eqs. (7) and 
(9) one obtains 
τ1 − i kρv 2 u = i k ( Q + pR ) a exp ( i kz ) 
τ2 = i k (R T + pT )a exp ( i kz ) (13) 

where 
Q i j = ˆ C 1 i j − ρv 2 δi j , R i j = ˆ C 2 i j , T i j = C 2 i j (14) 
and δij is the Kronecker delta. Combination of Eqs. (11) , (12) and 
(13) yields 
b = (R T + pT )a = −p −1 ( Q + pR ) a (15) 
where the superscript “T” denotes the transpose of a matrix. 
Eq. (15) can be written in the following eigenrelation as 
N ξ = pξ (16) 
where 
N = [N 1 N 2 

N 3 N T 1 
]
, ξ = {a 

b 
}

(17) 
are, respectively, the fundamental elastic tensor and state vector, 
and 
N 1 = −T −1 R T , N 2 = T −1 , N 3 = R T −1 R T − Q (18) 
3.2. Barnett–Lothe theory 

A new coordinate system ( x ′ 1 , x ′ 2 , x ′ 3 ) is now introduced by ro- 
tating the old coordinate system ( x 1 , x 2 , x 3 ) around the x 3 -axis by 
an angle ϕ. In ( x ′ 1 , x ′ 2 , x ′ 3 ), the eigenrelation similar to Eq. (16) can 
be obtained as 
N ( ϕ ) ξ ( ϕ ) = p ( ϕ ) ξ ( ϕ ) (19) 
where N ( ϕ) is also expressed by Eqs. (17) 1 and (18) , but Q , R and 
T should be replaced by 
Q ( ϕ ) = Q cos 2 ϕ + (R + R T ) sin ϕ cos ϕ + T sin 2 ϕ 
R ( ϕ ) = R cos 2 ϕ + ( T − Q ) sin ϕ cos ϕ − R T sin 2 ϕ 
T ( ϕ ) = T cos 2 ϕ − (

R + R T ) sin ϕ cos ϕ + Q sin 2 ϕ (20) 
It is well known that for an undistorted elastic body in the ref- 

erence configuration, N ( ϕ) has six complex eigenvalues which oc- 
cur in complex conjugate pairs as long as 0 ≤ v < v L , where v L is 
the so-called ‘limiting speed’ ( Chadwick and Smith, 1977 ) defined 
as the minimum speed at which it is possible to find a critical an- 
gle ϕL ∈ [0, 2 π ) making N ( ϕL ) have real eigenvalues. In the same 
way we can prove that for a stable elastic body under biasing field, 
there also exists a limiting speed v L so that N ( ϕ) has three pairs of 
conjugate complex eigenvalues provided 0 ≤ v < v L . In the present 
paper, only subsonic surface waves with 0 ≤ v < v L are investi- 
gated, and the word ‘existence’ to be used later means the exis- 
tence of subsonic surface waves. 

We may order the six eigenvalues in a way such that p i ( ϕ) 
( i = 1, 2, 3) have positive imaginary parts and p i +3 (ϕ) = p̄ i (ϕ) , 
where the overbar denotes complex conjugate. The eigenvector as- 
sociated with p i ( ϕ) is denoted by ξi ( ϕ). It was demonstrated that 
ξi ( ϕ) is parallel to ξi (0) ( Chadwick and Smith, 1977 ), which will 
be abbreviated as ξi in the following. Thus, ξi = [ a T 

i b T 
i ] T is also 

an eigenvector of N ( ϕ). The integral matrix of N ( ϕ) is defined as 
( Barnett and Lothe, 1985 ) 
˜ N = 1 

π

∫ π

0 N (ϕ) d ϕ = [ S H 
−L S T 

]
(21) 

where 
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S = 1 

π

∫ π

0 N 1 ( ϕ ) d ϕ = i ( 2 AB − I ) 
H = 1 

π

∫ π

0 N 2 ( ϕ ) d ϕ = 2i A A T 
L = − 1 

π

∫ π

0 N 3 ( ϕ ) d ϕ = −2i B B T (22) 
In Eq. (22) , I is the identity matrix, and 

A = [a 1 a 2 a 3 ], B = [b 1 b 2 b 3 ] (23) 
The impedance matrix M ( v ) is defined as ( Barnett and 

Lothe, 1985 ) 
M (v ) = −i B A −1 (24) 

Thus, the displacement polarization vector a i ( i = 1, 2, 3) and 
the stress polarization vector b i are related by b i = i M (v ) a i . The 
impedance matrix M ( v ) can also be expressed alternatively as 
( Barnett and Lothe, 1985 ) 
M (v ) = H −1 + i H −1 S (25) 

In the following, the impedance matrix M ( v ) will be used to 
establish the characteristic dispersion equation for surface waves 
in a coated half-space. By using its properties, the criteria for the 
existence of surface waves then can be established. 
3.3. Dispersion equation 

We now consider the surface wave which propagates in the 
x 1 -direction with its amplitude attenuating along the positive x 2 - 
direction. The general solutions of the displacement vector and in- 
cremental stress potential vector obtained from Eqs. (9) and (11) by 
linear superposition of the three parts associated with p 1 , p 2 and 
p 3 can be written as ( Ting, 2007 ) 
u = A ⟨ exp (i k z ∗) ⟩ q , ! = B ⟨ exp (i k z ∗) ⟩ q (26) 
where q is a constant vector to be determined, and 
⟨ exp (i k z ∗) ⟩ = 

[ 
exp (i k z 1 ) 0 0 

0 exp (i k z 2 ) 0 
0 0 exp (i k z 3 ) 

] 
, 

z i = x 1 + p i x 2 − v t (i = 1 , 2 , 3) (27) 
In Appendix A , the mechanics of a pre-deformed thin elastic 

film is investigated. Effective boundary conditions, i.e. Eq. (A.12), 
which approximate the effect of the deformed film on the sub- 
strate are established. It should be emphasized here that the direct 
thickness effect of the coating film has been dropped in obtaining 
Eq. (A12). Substitution of Eq. (26) into Eq. (A.12) yields 
[
M (v ) − hk N F 3 (v ) ]( Aq ) = 0 (28) 

where the superscript “F ” denotes the quantities of the coating film 
and h is its thickness after pre-deformation. To obtain Eq. (28) , we 
have made use of Eq. (24) and 
G F 1 = Q F + ρF v 2 I − R F ( T F ) −1 ( R F ) T = −N F 3 (v ) + ρF v 2 I . (29) 

Because the determinant of A cannot be zero, for non-trivial so- 
lutions of Eq. (28) , we have 
∣∣M (v ) − hk N F 3 (v ) ∣∣ = 0 (30) 
which is the characteristic dispersion equation of surface waves in 
the coated half-space. 
3.4. Existence and mode multiplicity of surface waves 

The existence problem of surface waves in a homogeneous elas- 
tic half-space has been solved by the Stroh formalism ( Stroh, 1962 ) 
and further elaborated based on the Barnett-Lothe theory ( Barnett 

and Lothe, 1974, 1985; Lothe and Barnett, 1976 ). It is well known 
that if a surface wave exists, its mode is unique. However, for 
an elastic half-space with coating film, previous studies ( Tiersten, 
1969; Dorfmann and Ogden, 2010 ) have shown that the mode 
uniqueness of surface waves does not hold anymore, i.e. there 
may be multiple surface wave modes in certain appropriate situ- 
ation. By adopting the surface elasticity theory ( Gurtin and Mur- 
doch, 1975 ), Murdoch (1976) investigated the propagation of sur- 
face waves in an isotropic elastic body with material boundary, 
showing that the residual stress, surface density, and surface elastic 
moduli all have significant effects on the surface wave behavior. In 
particular, in some situations there will be only one wavenumber 
corresponding to a fixed frequency, whilst in other situations there 
may be zero, two or three wavenumbers to a frequency. How- 
ever, the discussion in Murdoch (1976) is somehow cumbersome, 
and the explicit conditions for the existence of each surface wave 
mode have not been established. In the following, the problem of 
existence and mode multiplicity of surface waves in a deformed 
coated half-space, will be further considered based on the disper- 
sion Eq. (30) . 

As a preparation, we introduce the matrix 
Z (v , k ) = M (v ) − hk N F 3 (v ) (31) 

It is well known that M ( v ) is a Hermitian matrix ( Barnett and 
Lothe, 1985 ) and N F 3 (v ) is a real symmetric matrix. Hence, it can 
be concluded that Z ( v, k ) is also a Hermitian matrix, and as a re- 
sult, its three eigenvalues y 1 ( v,k ), y 2 ( v,k ) and y 3 ( v,k ) are all real. 
On differentiating Z ( v, k ) with respect to v we obtain 
∂ Z (v , k ) /∂ v = ∂ M (v ) /∂ v − hk∂ N F 3 (v ) /∂ v = ∂ M (v ) /∂ v − 2 hk ρF v I 

(32) 
In deriving the last expression in Eq. (32) , we have made use of 

Eqs. (14) and (18) 3 . 
For an undistorted elastic body in the reference configura- 

tion, ∂ M ( v )/ ∂ v in Eq. (32) is a negative definite Hemitian matrix 
( Barnett and Lothe, 1985; Fu and Mielke, 2002 ). Following Fu and 
Mielke (2002) (referring to Eqs. (2.21)-(2.36) there), we obtain 
Ū T (0) ∂M (v ) 

∂v U (0) = −2 ρv ∫ + ∞ 
0 Ū T ( x 2 ) U ( x 2 ) d x 2 (33) 

where 
U ( x 2 ) = A ⟨ exp (i k p ∗x 2 ) ⟩ q (34) 

From Eq. (33) , it can be concluded that Ū T (0) ∂M (v ) 
∂v U (0) < 0 

is valid for arbitrary nonzero vector U (0). Thus we conclude that 
∂ M ( v )/ ∂ v is negative definite even if a biasing field is applied. In 
addition, we know from Eq. (32) that ∂ M ( v )/ ∂ v is a Hermitian ma- 
trix. Consequently, ∂ M ( v )/ ∂ v is a negative definite Hemitian matrix 
and its three eigenvalues ∂ y i ( v,k )/ ∂ v ( i = 1, 2, 3), i.e. the derivatives 
of the eigenvalues of Z ( v, k ) defined in Eq. (31) , are negative. Then, 
we have the following theorem. 
Theorem 1. The eigenvalues y i ( v,k ) ( i = 1, 2, 3) of Z ( v, k ) are mono- 
tonically decreasing functions of the velocity v, i.e. ∂y i ( v,k )/ ∂v < 0 . 

The dispersion Eq. (30) implies that, for a given wavenumber, 
surface waves exist if at least one of the eigenvalues of Z ( v S ,k ) is 
zero, where v S < v L . Together with Theorem 1 , we conclude that 
there are at most three surface wave modes whose dispersion re- 
lations are determined by y i ( v Si ,k ) = 0 ( i = 1, 2, 3, no summation on 
i ), respectively. We thus have the second theorem below. 
Theorem 2. If y i (0, k ) > 0 and y i ( v L ,k ) < 0 ( i = 1, 2, 3) , a subsonic ve- 
locity of the i-th order surface wave mode corresponding to the given 
wavenumber k can be found, i.e. there exists a velocity v Si ∈ (0, v L ) 
satisfying y i ( v Si ,k ) = 0 ( i = 1, 2, 3 , no summation on i ) . 
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Based on the above two theorems, we are able to investi- 

gate the mode multiplicity of surface waves, establish the crite- 
ria for the existence of surface waves, and determine the associ- 
ated wavenumber ranges. In the following section, the isotropic 
Hadamard material model will be chosen as an example to con- 
sider the effects of coating film and biasing field on the properties 
of surface wave propagation. 
4. Surface waves in a coated isotropic half-space of restricted 
Hadamard material 
4.1. Propagation of surface waves 

Let’s consider a compressible isotropic elastic material modeled 
by the following Hadamard strain-energy function ( Chadwick and 
Jarvis, 1979 ) 
$ = 1 

2 µ[
tr (F F T ) − 3 ] + κ f ( J ) (35) 

By attributing to the dimensionless response function f ( J ) the 
following properties 
f (1) = 0 , f ′ (1) = −η, f ′′ (1) = 1 + 1 

3 η, (η = µ/κ ) (36) 
we can interpret µ and κ respectively as the shear and bulk mod- 
uli of the material in infinitesimal deformation from reference con- 
figuration B r . In Eq. (36) , the prime denotes differentiation with 
respect to J . In addition to Eq. (36) , f ( J ) may be subjected to other 
restrictions (see Eq. (4.3) in Chadwick and Jarvis (1979) ); for exam- 
ple, f ′ ′ ( J ) ≥ 0 for an arbitrary positive J . 

We take the homogeneous deformation from reference configu- 
ration B r to B 0 to be a finite equi-biaxial in-plane pre-stretch par- 
allel to the boundary surface. We further denote λ1 as the princi- 
pal stretch along the x 1 - and x 3 -axes in the horizontal plane, and 
λ2 as the principal stretch along the vertical x 2 -axis. Substitution 
of Eq. (35) into Eq. (2) yields the following components of the ef- 
fective elastic tensor (no summation on the repeated subscript i ) 
( Chadwick and Jarvis, 1979 ) 
A 0 i jkl = µJ −1 λ2 

i δik δ jl + κ{ J f ′ (J ) } ′ δi j δkl − κ f ′ (J ) δil δ jk (37) 
where λ3 = λ1 and J = λ2 

1 λ2 . We assume that the coating film can 
be also described by the Hadamard strain-energy function (35) , 
with µ, κ , etc. in Eq. (37) being replaced by µF , κF , etc., and 
µF / κF = µ/ κ (i.e. η is the same for both the film and the substrate). 
The primary pre-stretches of the film and substrate in the ( x 1 , x 3 )- 
plane are assumed to be identical. Similar to the substrate, the ef- 
fective elastic coefficients in the coating film are (again, no sum- 
mation on the repeated subscript i ) 
A F 0 i jkl = µF ( J F ) −1 λ2 

i δik δ jl + κF [ J F f ′ ( J F )] ′ δi j δkl − κF f ′ ( J F ) δil δ jk (38) 
where J F = det [ F F ] = λ2 

1 λF 
2 . In this paper, we further assume that 

the pre-deformation makes the plane of X 2 = const . tractions-free 
in both the coating film and the substrate. Thus, we have 

ηλ−4 
1 + J −1 f ′ (J) = 0 

ηλ−4 
1 + ( J F ) −1 f ′ ( J F ) = 0 (39) 
From Chadwick and Jarvis (1979) we know that for an arbitrary 

positive value λ1 there will be precisely one positive value of J and 
J F satisfying Eq. (39) , which implies J F = J . This further leads to λF 

2 = 
λ2 . Thus, we are faced with the situation that the pre-stretches in 
the film and substrate are identical. For simplicity, we will refer to 
this case as the uniform pre-deformation of the coated half-space. 

In the subsonic region, Chadwick and Jarvis (1979) have ob- 
tained the explicit expressions for the matrices in Eq. (22) as 
S = [( α2 − 2 αβ + 1) / ( α2 − 1)](−β−1 e 1 ! e 2 + α−1 e 2 ! e 1 ) 
H = µ−1 Jλ−2 

2 {
[(αβ − 1) / ( α2 − 1)]( β−1 e 1 ! e 1 + α−1 e 2 ! e 2 ) 

+ α−1 e 3 ! e 3 } (40) 
where e i !e j is the dyadic with e i ( i = 1, 2, 3) being the orthogonal 
basis vectors, and 
α = λ−1 

2 √ 
λ2 

1 − J µ−1 ρv 2 
β = θ−1 

2 √ 
θ2 

1 − J µ−1 ρv 2 (41) 
θi = √ 

λ2 
i + η−1 J 2 f ′′ (J) (i = 1 , 2) 

We then find 
θi ≥ λi (i = 1 , 2) (42) 
due to the fact that f ′ ′ ( J ) ≥ 0. The limiting speed can be obtained 
by setting α = 0 ( Chadwick and Jarvis, 1979 ) 
v L = √ 

µ/ (ρλ2 ) (43) 
In the subsonic region (0 ≤ v < v L ), both α and β are real. By 

substituting Eq. (40) into Eq. (25) we obtain 
M (v ) = µJ −1 λ2 

2 { [( α2 − 1) / (αβ − 1)](βe 1 ! e 1 + αe 2 ! e 2 ) 
+ αe 3 ! e 3 − i[( α2 − 2 αβ + 1) / (αβ − 1)] 
( e 1 ! e 2 − e 2 ! e 1 ) } (44) 

It is apparent that in the subsonic region, M 11 ( v ), M 22 ( v ) and 
M 33 ( v ) are all real whilst M 12 ( v ) is zero or pure imaginary. By 
substituting the effective elastic tensors Eqs. (37) and (38) into 
Eq. (18) 3 and using Eqs. (39) and (41) 3 we obtain the following 
expression for N F 3 (v ) 
N F 3 (v ) = −µF J −1 [ λ2 

1 I − ϑ 2 λ2 
2 e 1 ! e 1 − λ2 

2 e 2 ! e 2 ] + ρF v 2 I (45) 
where 
ϑ 2 = (4 λ2 

2 − 3 θ2 
2 ) /θ2 

2 (46) 
For simplicity we define N 0 3 (v ) = h N F 3 (v ) , where h , the thickness 

of the deformed film, is related to the initial thickness H by H = 
λ−1 

2 h . Due to the inequality (42) we obtain 
N 0 311 (v ) − N 0 322 (v ) = −4 h µF J −1 (θ2 

2 − λ2 
2 ) λ2 

2 θ−2 
2 ≤ 0 (47) 

Thus, N 0 311 (v ) ≤ N 0 322 (v ) , and the equality holds if and only if 
f ′ ′ ( J ) = 0 . 

Substitution of Eq. (44) into Eq. (28) , and noticing N 0 3 (v ) = 
h N F 3 (v ) , we obtain 
[ 

M 11 (v ) − kN 0 311 (v ) M 12 (v ) 0 
−M 12 (v ) M 22 (v ) − kN 0 322 (v ) 0 

0 0 M 33 (v ) − kN 0 333 (v ) 
] 

( Aq ) = 0 (48) 
Obviously, the surface waves polarized in the x 3 -direction (the 

anti-plane waves) are decoupled from the surface waves polarized 
in the ( x 1 , x 2 )-plane (the in-plane waves). Thus, we could rewrite 
the above equation as: 
[

M 11 (v ) − kN 0 311 (v ) M 12 (v ) 
−M 12 (v ) M 22 − kN 0 322 (v ) 

]{
( Aq ) 1 
( Aq ) 2 

}
= 0 

[
M 33 (v ) − kN 0 333 (v ) ]( Aq ) 3 = 0 (49) 
The first equation is for Rayleigh waves whilst the second is for 

Love waves. 
The dispersion equation of Rayleigh waves is thus obtained as 

∣∣∣∣
M 11 (v ) − kN 0 311 (v ) M 12 (v ) 

−M 12 (v ) M 22 (v ) − kN 0 322 (v ) 
∣∣∣∣ = 0 (50) 

or 
H 1 (v ) k 2 + H 2 (v ) k + H 3 (v ) = 0 (51) 
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where 
H 1 (v ) = N 0 311 (v ) N 0 322 (v ) 
H 2 (v ) = −N 0 311 (v ) M 22 (v ) − N 0 322 (v ) M 11 (v ) 
H 3 (v ) = M 11 (v ) M 22 (v ) + M 2 12 (v ) (52) 

From Eqs. (51) and (52) , we conclude that: 1) in the subsonic 
region, H 1 ( v ), H 2 ( v ) and H 3 ( v ) are all real functions; 2) by dropping 
the biasing fields and appropriately defining the film parameters, 
the dispersion equation of Rayleigh waves in an elastic half-space 
with material boundary in Murdoch (1976) , but in the absence of 
residual stress, can be obtained from Eq. (51) (see the details in 
Appendix B ); and 3) when the coating film is absent, we obtain 
H 1 ( v ) = H 2 ( v ) = 0 and Eq. (51) degenerates to 
( α2 − 1) −1 [ ( α2 + 1) 2 − 4 αβ] = 0 (53) 
which is identical to the dispersion equation of surface waves in a 
homogeneous elastic half-space ( Chadwick and Jarvis, 1979 ). 

The dispersion equation of Love waves derived from Eq. (49) 2 
is 
M 33 (v ) − kN 0 333 (v ) = 0 (54) 

It is shown in Appendix B that this equation is identical to that 
obtained by Murdoch (1976) in the same situation. 
4.2. Existence and mode multiplicity of surface waves 

The dispersion Eq. (54) of Love waves is simple, which enables 
us to analyze the conditions for their existence directly. On the 
other hand, the dispersion Eq. (51) of Rayleigh waves is much com- 
plicated, and a direct analysis may be very tedious. Thus, we will 
apply Theorems 1 and 2 stated in Section 3.4 to treat both Rayleigh 
and Love waves in a uniform way so that the conditions for their 
existence and the associated mode multiplicity can be obtained ex- 
plicitly. This is presented below. 

By substituting Eqs. (44) and (45) into Eq. (31) and solving 
the eigenvalue problem, we obtain the explicit expressions of 
y i ( v,k ) ( i = 1, 2, 3) 
y 1 (v , k ) = X(v ) −√ 

Y 2 (v ) −4 M 2 12 (v ) 
2 

y 2 (v , k ) = X(v )+ √ 
Y 2 (v ) −4 M 2 12 (v ) 

2 
y 3 (v , k ) = M 33 (v ) − kN 0 333 (v ) 

(55) 
where 
X (v ) = M 11 (v ) + M 22 (v ) − k [ N 0 311 (v ) + N 0 322 (v )] 
Y (v ) = M 11 (v ) − M 22 (v ) − k [ N 0 311 (v ) − N 0 322 (v )] (56) 

We assume first that there are two subsonic Rayleigh wave ve- 
locities v S 1 and v S 2 satisfying y 1 ( v S 1 , k ) = 0 and y 2 ( v S 2 , k ) = 0. We can 
prove that v S 1 < v S 2 : If y 2 ( v S 2 , k ) = 0, then X ( v S 2 ) < 0. Thus, accord- 
ing to Eq. (55) 1 we conclude that y 1 ( v S 2 , k ) < 0. Combining condi- 
tions y 1 ( v S 2 , k ) < 0, y 1 ( v S 1 , k ) = 0, and Theorem 1 in Section 3.4 , we 
have v S 1 < v S 2 . Therefore, we have the following two corollaries by 
further making use of Theorem 2 in Section 3.4 . 
Corollary 1. The conditions for the existence of the low-order ( first- 
order ) Rayleigh waves ( or FRWs ) are y 1 (0, k ) > 0 and y 1 ( v L ,k ) < 0. 
Corollary 2. The conditions for the existence of the high-order 
( second-order ) Rayleigh waves ( or SRWs ) are y 2 (0, k ) > 0 and y 2 ( v L ,k ) 
< 0. 

If there is a subsonic velocity v S 3 satisfying y 3 ( v S 3 , k ) = 0, v S 3 is 
then the velocity of Love waves. Again, together with Theorem 2 in 
Section 3.4 , we have the following corollary. 
Corollary 3. The conditions for the existence of Love waves are 
y 3 (0, k ) > 0 and y 3 ( v L ,k ) < 0 . 

Table 1 
Wavenumber ranges of FRWs. 

Biasing field Coating parameter Wavenumber range 
λ1 > λ2 γ < λ−2 

1 (λ2 
1 − λ2 

2 ) 0 ≤ k < k 2 ( v L ) 
γ ≥ λ−2 

1 (λ2 
1 − λ2 

2 ) k ≥ 0 
λ1 = λ2 and H 3 (0) > 0 Arbitrary k ≥ 0 
λ1 = λ2 and H 3 (0) ≤ 0 Arbitrary k > H 3 (0) 

N 0 311 (0) M 22 (0) 
λ1 < λ2 and H 3 (0) > 0 Arbitrary 0 ≤ k < k 1 (0) 
λ1 < λ2 , H 3 (0) ≤ 0 and λ2 

1 > 2λ2 
2 Arbitrary k 2 (0) < k < k 1 (0) 

λ1 < λ2 , H 3 (0) ≤ 0 and λ2 
1 ≤ 2λ2 

2 Arbitrary k ∈ Ø
Table 2 
Wavenumber ranges of SRWs. 

Biasing field Coating parameter Wave number range 
λ2 

1 > ϑ 2 λ2 
2 γ > λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) k > k 2 ( v L ) 
γ ≤ λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) k ∈ Ø
λ2 

1 ≤ ϑ 2 λ2 
2 Arbitrary 0 ≤ k < k 2 (0) ∩ k > k 2 ( v L ) 

The solutions of y i (0, k ) > 0 and y i ( v L ,k ) < 0 ( i = 1, 2) in various 
situations are discussed in detail in Appendix C . From the derived 
solutions, we can identify the wavenumber ranges of FRWs and 
SRWs corresponding to various biasing fields and coating param- 
eters, which are summarized in Tables 1 and 2 , which also clearly 
indicate the conditions for the existence of each wave mode. In 
the two tables, symbols Ø and ∩ denote, respectively, the empty 
set and the intersection of sets, and the relevant parameters are 
defined as 
γ = v 2 L / (v F L )2 

, 3( v ) = H 2 2 ( v ) − 4 H 1 ( v ) H 3 ( v ) 
k 1 ( v ) = −H 2 ( v ) − √ 

3( v ) 
2 H 1 ( v ) , k 2 ( v ) = −H 2 ( v ) + √ 

3( v ) 
2 H 1 ( v ) 

2 = M 2 22 ( 0 ) ϑ 2 + [ √ 
−H 3 ( 0 ) + √ 

−M 2 12 ( 0 ) ] 2 
[ √ 

−H 3 ( 0 ) + √ 
−M 2 12 ( 0 ) ] 2 + M 2 22 ( 0 ) 

(57) 

where v F L is the limiting speed of the coating film expressed by 
v F L = √ 

µF / ( λ2 ρF ) (58) 
We further point out that, from Chadwick and Jarvis (1979) we 

find that H 3 (0) > 0 is the stability condition of a homogeneous 
elastic half-space. 

For biasing fields satisfying λ1 ≤ λ2 , the inequality γ ≥
λ−2 

1 (λ2 
1 − λ2 

2 ) holds automatically, and consequently the coating 
parameters can be arbitrary. It is proved in Appendix C that the 
inequality λ1 ≤ λ2 holds naturally if H 3 (0) ≤ 0. Table 1 can be 
utilized to predict the wavenumber range of FRWs for the given 
biasing field and coating parameter. For example, if the biasing 
field satisfies λ1 > λ2 and the coating parameter γ satisfies γ < 
λ−2 

1 (λ2 
1 − λ2 

2 ) , then FRWs exist for 0 ≤ k < k 2 ( v L ). Our further 
study reveals that FRWs will transfer into supersonic waves if k 
> k 2 ( v L ). To summarize, it is shown in Table 1 that: 1) if the bi- 
asing field and coating parameter respectively satisfy λ1 > λ2 and 
γ ≥ λ−2 

1 (λ2 
1 − λ2 

2 ) , then FRWs exist for k ≥ 0; 2) if the biasing field 
satisfies λ1 < λ2 and H 3 (0) > 0, then FRWs exist for 0 ≤ k < 
k 1 (0); and 3) if the biasing field satisfies λ1 < λ2 , H 3 (0) ≤ 0 and 
λ2 

1 > 2λ2 
2 , then FRWs exist in the region k 2 (0) < k < k 1 (0). 

Table 2 shows the wavenumber ranges of SRWs in various sit- 
uations. The coating parameter can be arbitrary when λ2 

1 ≤ ϑ 2 λ2 
2 

because γ > λ−2 
1 (λ2 

1 − ϑ 2 λ2 
2 ) holds automatically in this situation. 

It is shown in Table 2 that: 1) when the biasing field satisfies 
λ2 

1 > ϑ 2 λ2 
2 , then SRWs exist for k > k 2 ( v L ) if the coating param- 

eter satisfies γ > λ−2 
1 (λ2 

1 − ϑ 2 λ2 
2 ) , whilst SRWs do not exist if γ

satisfies γ ≤ λ−2 
1 (λ2 

1 − ϑ 2 λ2 
2 ) ; and 2) when the biasing field satis- 

fies λ2 
1 ≤ ϑ 2 λ2 

2 , then the existence of SRWs depends on the values 
of k 2 (0) and k 2 ( v L ), i.e. if k 2 (0) ≤ k 2 ( v L ), SRWs do not exist, while 
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Table 3 
Wavenumber ranges of Love waves. 

Coating parameter Wave number range 
γ > 1 k ≥ 0 
γ ≤ 1 k ∈ Ø

if k 2 (0) > k 2 ( v L ), SRWs exist for k 2 ( v L ) < k < k 2 (0). These features 
indicate that the necessary condition for the existence of SRWs is 
γ > λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) . Thus, it becomes possible to tune SRWs by 
choosing an appropriate coating film or by changing the biasing 
field. 

For Love waves, the necessary and sufficient condition of y 3 (0, k ) 
> 0 is 
M 33 (0) − kN 0 333 (0) > 0 (59) 

This inequality holds automatically since M 33 (0) = µλ−1 
1 > 0 

and N 0 333 (0) = −h µF J −1 λ2 
1 < 0 . As a result, y 3 (0, k ) must be positive. 

The necessary and sufficient condition of y 3 ( v L ,k ) < 0 is 
N 0 333 ( v L ) > 0 (60) 
namely 
γ > 1 (61) 

As can be observed from Table 3 that the existence of Love 
waves depends only on the coating parameter γ . Love waves exist 
in the coated half-space with a soft surface film (i.e., the limiting 
speed of the film is lower than that in the substrate, namely γ > 
1), whilst they disappear when there is a stiff coating film over the 
substrate (namely γ ≤ 1). 

As mentioned earlier, the dispersion Eq. (54) for Love waves is 
simple. Therefore, we are able to obtain the existence condition for 
Love waves directly from Eq. (54) , which can be written as 
k = J −1 λ2 

2 µα

h ρF v 2 − hλ−1 
2 µF (62) 

Obviously, the wavenumber is real and positive if the following 
two conditions are satisfied: 

(1) v 2 > µF λ2 
1 J −1 / ρF ; 

(2) α is real, which means v 2 ≤ J −1 λ2 
1 µ/ρ . 

From these two conditions, we conclude that Love waves exist 
if and only if 
µF / ρF < µ/ρ (63) 

The inequality (63) is equivalent to the inequality (61) . 
5. Application to rubber materials with numerical results 

As an application, we consider the continuum nearly- 
incompressible rubber whose response function f ( J ) is given 
by ( Chadwick and Jarvis, 1979 ) 
f (J ) = 1 

m 
(

J + 1 
m − 1 J −m +1 − m 

m − 1 
)

− 3 
2 η(

J 2 / 3 − 1 ) (64) 
where the parameters are selected for the substrate as m = 10, 
η = 5 × 10 − 4 , µ= 10 6 Pa and ρr = 10 3 kgm −3 . The parameters of 
the coating film are related with those of the substrate by 
µF = rµ, ρF 

r = rγ ρr (65) 
where γ is defined in Eq. (57) 1 and r is the shear modulus ratio. 
We define the dimensionless wavenumber ˜ k = Hk and dimension- 
less velocity s = v / v b , where v b = √ 

µ/ ρr . The thickness of the coat- 
ing film in the reference configuration is taken to be H = 10 −7 m . 

For numerical illustration, three different biasing fields are 
considered, namely, B 1 ) λ1 = 0.8 and λ2 = 1.56, i.e. the coated 

Fig. 2. Dispersion curves (dimensionless velocity vs. dimensionless wavenumber) 
of Love waves in an elastic half-space with a soft coating film under three kinds of 
biasing fields. 
half-space is equi-biaxially compressed in the horizontal ( X 1 , X 3 )- 
plane; B 2 ) λ1 = λ2 = 1, which means there is no biasing field; 
and B 3 ) λ1 = 1.5 and λ2 = 0.445, i.e. the structure is equi-biaxially 
tensed in the horizontal ( X 1 , X 3 )-plane. As assumed earlier, the 
pre-deformation always makes the plane of X 2 = const . tractions- 
free. In addition, two types of coating film are considered: C A ) 
r = 0.1 and γ = 100, which implies a soft coating film ( v F L < v L ); 
and C B ) r = 10 and γ = 0.01, which corresponds to a stiff coating 
film ( v F L > v L ). 

First, we consider Love waves. According to Eq. (61) , Love waves 
exist if and only if γ > 1. As a result, there are no Love waves in 
a rubber half-space covered by a C B –type film. On the other hand, 
the dispersion curves of Love waves in a rubber half-space cov- 
ered by a C A –type film under different biasing fields are plotted in 
Fig. 2 . 

It is observed from Fig. 2 that, when ˜ k tends to zero, the di- 
mensionless velocity s tends to v L / v b (i.e., the velocity v tends to 
the limiting speed v L ). Thus, the physical interpretation of Love 
waves is that a soft coating film would slow down the propagation 
of shear waves in the substrate and consequently concentrates the 
energy of shear waves near the surface. The velocity of Love waves 
is between the limiting speed of the coating film and that of the 
substrate, i.e. v F L < v < v L , which reduces to the velocity range of 
Love waves obtained by Murdoch (1976) (see his Eq. (3.6)) when 
neglecting the biasing field. The comparison of the three curves in 
Fig. 2 demonstrates further that a compressive biasing field slows 
down the propagation of Love waves whilst a tensile biasing field 
accelerates their propagation. As a result, it is possible to tune Love 
wave devices by exerting different biasing fields. 

Since the dispersion equation of Love waves is simple, they 
may be used to self-sense the considered structure under a biasing 
filed. Fig. 3 shows that, for a given frequency, the velocity of Love 
waves s varies linearly with pre-stretch λ1 . Such a linear function 
feature is particularly appealing in sensor designs. Actually from 
Eq. (62) , the following analytical linear relation between the ve- 
locity and pre-stretch can be derived, which could be conveniently 
used by sensor designers. 
s = λ1 

√ 
2 γ r 2 H 2 ω 2 / v 2 

b + 1 + √ 
4 ( γ − 1 ) r 2 H 2 ω 2 / v 2 

b + 1 
2 r 2 γ 2 H 2 ω 2 / v 2 

b + 2 . (66) 
Eq. (66) demonstrates that the pre-stretch can be predicted (or 

monitored) accurately by measuring the velocity of Love waves. It 
further shows that, for a given biasing field, the thickness H of the 
surface thin film can be determined accurately by measuring the 
velocity and frequency of Love waves (also making use of Eq. (62) ). 
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Fig. 3. Linear variation of Love wave velocity s vs. pre-stretch λ1 . 

Fig. 4. Dispersion curves of Rayleigh waves in a coated rubber half-space under the 
biasing field in Case B 1 (equi-biaxially compressed). 

Fig. 5. Dispersion curves of Rayleigh waves in a coated rubber half-space without 
biasing field (i.e. Case B 2 ). 

As for Rayleigh waves, the dispersion curves of FRWs and SRWs 
can be determined from Eq. (50) . The results are presented in 
Figs. 4 , 5 and 6 , respectively, under the biasing field in Case B 1 
(equi-biaxially compressed), Case B 2 (without biasing field), and 
Case B 3 (equi-biaxially tensed). In these figures, the solid line cor- 
responds to FRWs associated with the soft film C A , dashed line 
to FRWs associated with the stiff film C B , and dot-dashed line to 
SRWs associated with the soft film. It is observed that the disper- 

Fig. 6. Dispersion curves of Rayleigh waves in a coated rubber half-space under the 
biasing field in Case B 3 (equi-biaxially tensed). 
sion curves for Rayleigh waves under a biasing field ( Figs. 4 and 6 ) 
are completely different from those without a biasing field ( Fig. 5 ). 
In particular, the dispersion curves of FRWs and SRWs with a soft 
coating film do not intersect with each other (although the two 
curves in Fig. 6 are extremely close to each other). 

To understand in more detail of the wave features, we com- 
pute the wavenumber ranges of FRWs and SRWs corresponding to 
various biasing fields and coating films based on Tables 1 and 2 , 
and compare these predictions with the numerical results shown 
in Figs. 4-6 . 

First, for the coated half-space under the compressive biasing 
field B 1 shown in Fig. 4 , we have λ1 < λ2 and H 3 (0) = 5.54 µ2 > 
0. According to Table 1 , the wavenumber range of FRWs is 0 ≤ ˜ k < 
˜ k 1 (0) in this situation. For the soft film C A , we have ˜ k 1 (0) = 6 . 295 
and for the stiff film C B we have ˜ k 1 (0) = 0 . 0629 . In addition, be- 
cause ϑ 2 λ2 

2 = −7 . 31 for this biasing field, we obtain λ2 
1 > ϑ 2 λ2 

2 . For 
the soft film C A , we have 
λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) = 12 . 4 < γ = 100 (67) 
According to Table 2 , SRWs exist in this situation with its 

wavenumber range ˜ k > ̃  k 2 ( v L ) = 0 . 432 . However, for the stiff film 
C B 
λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) = 12 . 4 > γ = 0 . 01 (68) 
Thus SRWs do not exist according to Table 2 . Obviously, the pre- 

dictions from Tables 1 and 2 are completely coincident with the 
numerical results shown in Fig. 4 . 

Second, for a coated half-space without biasing field (i.e. Case 
B 2 ), as shown in Fig. 5 , we have 
λ−2 

1 (λ2 
1 − λ2 

2 ) = 0 < γ (69) 
According to Table 1 , whether the coating film is soft ( C A ) or 

stiff ( C B ), FRWs exist in the full wavenumber region, i.e. ˜ k ≥ 0 . In 
addition, ϑ 2 λ2 

2 = −3 , and therefore for the soft film C A 
λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) = 4 < 100 (70) 
The wavenumber range of SRWs is ˜ k > ̃  k 2 ( v L ) = 0 . 167 according 

to Table 2 , and for the stiff film C B , 
λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) = 4 > 0 . 01 (71) 
Thus, SRWs do not exist according to Table 2 . These predictions 

are also consistent with the numerical results presented in Fig. 5 . 
Based on the MT condition, Tiersten has investigated the sur- 

face waves in an undeformed layered elastic body ( Tiersten, 1969 ). 
In fact, our boundary condition is identical with the MT condi- 
tion when the pre-deformation is removed. He observed the ex- 
istence of the first order Rayleigh waves and the Sezawa waves. 
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The characteristics of the dispersion curves of these two surface 
wave modes calculated in Tiersten (1969) are quite similar to our 
results in Fig. 5 for soft coating condition. He compared his ap- 
proximate results calculated based on MT condition with the ex- 
act results and found that the approximated dispersion curve of 
the first order Rayleigh waves was accurate when ˜ k < 0 . 2 . He also 
found that the dispersion curve of the Sezawa waves was correct, 
but quite not accurate for almost all the wavenumber range. Ac- 
cording to the consistency between our theoretical results with 
those in Tiersten (1969) , we can deduce the same conclusion for 
the accuracy of the dispersion curves calculated in this manuscript. 

Finally, we look at the coated half-space under the tensile bi- 
asing field B 3 which satisfies λ1 > λ2 and ϑ 2 λ2 

2 = −0 . 594 < λ2 
1 , as 

shown in Fig. 6 . If the half-space is covered by the soft film C A , we 
then have 
λ−2 

1 (λ2 
1 − λ2 

2 ) = 0 . 912 < γ = 100 
λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) = 1 . 264 < γ = 100 (72) 
Thus, according to Tables 1 and 2 , the wavenumber ranges of 

FRWs and SRWs are respectively ˜ k ≥ 0 and ˜ k > ̃  k 2 ( v L ) = 0 . 0326 . If 
the half-space is covered by the stiff film C B , we then have 
λ−2 

1 (λ2 
1 − λ2 

2 ) = 0 . 912 > γ = 0 . 01 
λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) = 1 . 264 > γ = 0 . 01 (73) 
From Table 1 , the wavenumber range of FRWs is found to 

be 0 ≤ ˜ k < ̃  k 2 ( v L ) = 0 . 01 , whilst from Table 2 , SRWs do not ex- 
ist. Fig. 6 shows that the velocity of FRWs corresponding to the 
stiff film increases monotonically with the increasing wavenum- 
ber, and reaches the limit v L when the dimensionless wavenum- 
ber increases to ˜ k = 0 . 01 . By further increasing the wavenumber, 
i.e. ˜ k > 0 . 01 , the FRW would change to a supersonic wave. Or 
in other words, in terms of only the subsonic waves, FRWs do 
not exist when ˜ k > 0 . 01 . Once again, the wave features shown in 
Fig. 6 match those predicted by the formulas in Tables 1 and 2 . 

The comparison among Figs. 4, 5 and 6 indicates that the 
compressive biasing field pushes the dispersion curves of FRWs 
and SRWs away from each other ( Fig. 4 ), while the tensile bias- 
ing field pulls the two curves close to each other ( Fig. 6 ). It is 
further noticed from Fig. 6 that mode switching happens at the 
point where the two curves become extremely close to each other. 
This kind of mode switching was also reported in Adler and Solie 
(1995) and Nakahata et al. (1995) to name a few, and can be fur- 
ther understood by looking at the wave polarization vector. The 
polarization of SRWs is a = ( 1 −2 . 66i 0 ) T at ˜ k = 0 . 043 and 
a = ( 1 1 . 7i 0 ) T at ˜ k = 0 . 045 , and the polarization of FRWs is 
a = ( 1 0 . 23i 0 ) T at ˜ k = 0 . 043 and a = ( 1 −1 . 515i 0 ) T at 
˜ k = 0 . 045 . Consequently, mode switching happens at a point be- 
tween ˜ k = 0 . 043 and ˜ k = 0 . 045 . Therefore, by exerting an equi- 
biaxial tensile biasing field on a coated half-space, we may be able 
to induce mode switching, whilst by applying an equi-biaxial com- 
pressive biasing field the dispersion curves of the two modes could 
be pushed away from each other, which is particularly beneficial in 
the excitation of single wave mode (FRW or SRW). 

The comparison between the simulated results and Tables 1–
3 has illustrated the validity of the theoretical predictions in these 
tables. Now we use these predictions to construct a phase dia- 
gram to show the existence and mode multiplicity of surface waves 
in the ( λ1 , γ ) plane. We confine ourselves to the case of the soft 
coated elastic half-space subjected to an in-plane pre-stretched λ1 
≥ 1 (i.e. equi-biaxially tensed). The diagram is shown in Fig. 7 , 
which indicates four different regions: 1) in Region A, FRWs exist 
within the long wave region 0 ≤ k < k 2 ( v L ), but there is no SRW 
or no Love wave; 2) in Region B, FRWs exist in the full wavenum- 
ber region k ≥ 0, but there is neither SRW nor Love wave; 3) in 

Fig. 7. Phase diagram of the existence and mode multiplicity of surface waves in 
the ( λ1 , γ ) plane. 

Fig. 8. Effect of the coating film on the stability of the rubber half-space. 
Region C, FRWs and Love waves exist in the full wave number re- 
gion k ≥ 0, but SRWs do not exist; and 4) in Region D, FRWs and 
Love waves exist in the full wave number region k ≥ 0, while SRWs 
exist in the short wave region k > k 2 ( v L ). These regions are sepa- 
rated by three boundary curves, i.e. γ = λ−2 

1 (λ2 
1 − λ2 

2 ) , γ = 1, and 
γ = λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) . As one can see from the figure, the existence 
of SRWs depends on the tensile biasing field. For example, for an 
undistorted coated half-space, SRWs exist only if the coating film 
is as soft as γ > 4; while for a tensile biasing field with λ2 = 1.5, 
SRWs can exist even when the coating film is as stiff as γ = 1.5. 
Therefore, for a specified surface film, pre-deformation can be an 
effective means to switch on or off the propagation of SRWs. Con- 
sequently, this phase diagram could be applied directly as a guide 
for actively manipulating the performance of soft acoustic devices. 

Region A: FRWs exist for 0 ≤ k < k 2 ( v L ), SRWs or Love waves 
do not exist; Region B: FRWs exist for k ≥ 0, both SRWs and Love 
waves do not exist; Region C: FRWs and Love waves exist for k ≥
0, SRWs do not exist; Region D: FRWs and Love waves exist for k 
≥ 0, SRWs exist for k > k 2 ( v L ). 

Chadwick and Jarvis (1979) studied the instability of an elas- 
tic half-space by setting the surface wave speed to be zero. Sim- 
ilarly, the dispersion Eq. (51) of Rayleigh waves is reduced to the 
bifurcation equation by taking v = 0. The bifurcation curves of the 
rubber half-space under biasing field coated with soft or stiff film 
are plotted in Fig. 8 , where its horizontal axis is the dimensionless 
wavenumber ˜ k and the vertical axis is the in-plane stretch λ1 . In 
Fig. 8 , the solid line corresponds to the soft coating film, dashed 
line to the stiff coating film, and the dot-dashed line to the un- 
coated elastic half-space. It is observed that the solid line is tan- 
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gential to the horizontal dot-dashed line λ1 = λL at point (0, 0.67). 
Comparison between the two bifurcation curves (dashed and solid 
lines) in Fig. 8 indicates that, for a given biasing field λB 1 satisfy- 
ing λL < λB 1 < 1, the limiting instable wavenumber corresponding 
to a soft film is larger than that to a stiff film. We take the bi- 
asing field λ1 = 0.8 as an example. The horizontal line λ1 = 0.8 in 
Fig. 8 intercepts the dashed line at point K (0.0629, 0.8) and the 
solid line at point L (0.0629, 0.8). For the regions on the left-hand 
side of point K (L) and located above the bifurcation curves, the 
surface waves with wavenumber ˜ k < 0 . 0629 ( ̃ k < 6 . 295 ) can prop- 
agate stably in the elastic half-space coated with a stiff (soft) film. 
For the regions on the right-hand side of point K (L) and located 
below the bifurcation curves, the surface waves in the coated half- 
space are instable. This feature is consistent with the property of 
the FRW dispersion curves in Fig. 4 . 

It should be noted that the dispersion Eq. (54) of Love waves 
cannot be reduced to a bifurcation equation. If we assume v = 0, 
then Eq. (54) can be written as 
µλ−1 

1 + hkλ−1 
2 µF = 0 . (74) 

The left-hand side of Eq. (74) is positive, meaning that there is 
no surface buckling mode as Love waves in a coated elastic half- 
space. 

Since the effect of the film on the half-space has been modeled 
as the effective boundary conditions in which the thickness effect 
has been dropped, the coating film will always be instable under 
a compressive biasing field, as already pointed out by Ogden and 
Steigmann (1997). In other words, when ˜ k → ∞ , the limiting bias- 
ing field λ1 approaches 1, as shown in Fig. 8 . Therefore, the afore- 
mentioned instability actually corresponds to a specific wavenum- 
ber (or wave mode) and belongs to the catalogue of diffusive buck- 
ling. In practice, the thickness effect must be considered to predict 
the onset of the instability of a coated elastic half-space (Ogden 
and Steigmann, 1997). 
6. Conclusions 

The effective boundary conditions, which model the effect of 
a thin surface layer on the underlying half-space, are derived and 
employed. By using the Stroh formalism and Barnett-Lothe theory 
the equations governing surface waves in the coated half-space are 
obtained. By virtue of the properties of the surface impedance ma- 
trix, general criteria are established for the existence and mode 
multiplicity of surface waves. Under the assumption of uniform 
pre-deformation, the coated half-space made of restricted isotropic 
Hadamard material is exemplified and the conditions for existence 
and the wavenumber ranges of FRWs, SRWs and Love waves are 
obtained explicitly. Through theoretical analysis, it is found that 
both the coating film and the pre-deformation can significantly af- 
fect the propagation of all kinds of surface waves mentioned above. 
Therefore, it is possible to tune the wavenumber range and even 
the existence of each surface wave mode by varying the coating 
parameter γ and/or the pre-deformation λ1 for the optimal design 
of film/substrate structures, which are commonly used as one of 
the main configurations of wave devices. 

Based on our studies, the following conclusions can be drawn. 
1) The existence condition for Love waves is γ > 1. 2) The smaller 
the wavenumber is, the more sensitive Love waves are to the vari- 
ation of the biasing field. 3) Distinguishing from Rayleigh waves, 
the velocity of Love waves increases linearly with pre-stretch λ1 
for the given frequency, a unique feature which could be very use- 
ful for defecting internal defects or self-sensing the acoustic de- 
vices under biasing fields. 4) For SRWs, our theoretical analysis in- 
dicates that the necessary existence condition of SRWs is that the 
coating parameter should satisfy γ > λ−2 

1 (λ2 
1 − ϑ 2 λ2 

2 ) . 5) Our nu- 
merical examples show that there are three surface wave modes 

in an elastic half-space coated with a soft film C A while there is 
only one surface wave mode if the coating is a stiff film C B . The ex- 
istence and wavenumber range of each wave mode from our nu- 
merical examples are consistent with our theoretical predictions. 
6) The two dispersion curves of FRWs and SRWs in an elastic half- 
space coated with a soft film C A will be pushed away from each 
other by exerting an equal-biaxial compressive biasing field and 
will be pulled close to each other by an equal-biaxial tensile one. 
7) Mode switching may be observed if the dispersion curves of the 
two wave modes are very close to each other. 8) The stability of 
a coated half-space is also considered using the dispersion equa- 
tion of Rayleigh waves by setting the wave speed v = 0. 9) A phase 
diagram is constructed in the ( λ1 , γ )-plane to clearly show the ex- 
istence and mode multiplicity of surface waves, which can be used 
as guidance on designing actively tunable acoustic devices. In par- 
ticular, for a specified surface film, the propagation of SRWs may 
be switched on or off by appropriately tensing the coated half- 
space. 

Finally, it is noted that although the direct thickness effect of 
the coating film is ignored, the analysis of SRWs is still conducive 
to better understanding the higher-order Rayleigh waves in an 
elastic half-space coated with surface layer, and can further offer 
theoretical guidance for the design of acoustic wave devices based 
on SRWs. 
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Appendix A 

Ting (2007) obtained the effective boundary conditions of an 
anisotropic elastic half-space perfectly bonded with an elastic 
layer. As a direct extension of his treatment to the case with finite 
pre-deformation, the effective boundary conditions of a deformed 
elastic half-space overlain by a thin film are obtained in this ap- 
pendix. Let an undeformed thin anisotropic elastic film be bonded 
to an undeformed elastic half-space. The film and substrate can be 
made of different materials. A right-handed Cartesian coordinate 
system ( X 1 , X 2 , X 3 ) is attached to the undeformed coated half-space 
such that the film occupies the region − H ≤ X 2 < 0 while the half- 
space occupies the domain X 2 > 0, see Fig. A1 (a). It is assumed 
that the film and half-space are under uniform pre-deformation 
with the deformed film and half-space being perfectly bonded to- 
gether. Another right-handed Cartesian coordinate system ( x 1 , x 2 , x 3 ) 
is attached to the deformed coated half-space such that the de- 
formed film occupies the region − h ≤ x 2 < 0 while the half-space 
occupies the domain x 2 > 0, see Fig. A1 (b). 

From the strong ellipticity condition (3) , we conclude that the 
matrix C 2 in Eq. (7) is positive definite, so that (7) 2 can be solved 
for u , 2 as 
u , 2 = D 0 τ2 − D T 1 u , 1 − D T 3 u , 3 (A.1) 
in which 
D 0 = C −1 

2 , D 1 = C T 1 D 0 , D 3 = C T 3 D 0 (A.2) 
Substitution of Eq. (A.1) into Eqs. (7) 1 and (7) 3 yields 

τ1 = ˆ E 0 τ2 + ̂  E 1 u , 1 + ̂  E 3 u , 3 
τ3 = ⌣ 

E 0 τ2 + ⌣ E 1 u , 1 + ⌣ E 3 u , 3 (A.3) 
where 
ˆ E 0 = ˆ C 2 D 0 , ˆ E 1 = ˆ C 1 − ˆ E 0 C 1 , ˆ E 3 = ˆ C 3 − ˆ E 0 C 3 
⌣ 
E 0 = ⌣ 

C 2 D 0 , ⌣ 
E 1 = ⌣ 

C 1 − ⌣ 
E 0 C 1 , ⌣ 

E 3 = ⌣ 
C 3 − ⌣ 

E 0 C 3 (A.4) 

http://dx.doi.org/10.13039/501100001809
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Fig. A.1. The coated half-space in (undeformed) reference and (deformed) initial configurations. 
By substituting Eq. (A.3) into the equations of motion (6) and 

assuming the effective elastic coefficients be independent of x 1 and 
x 3 , we obtain 
τ2 , 2 + D 1 τ2 , 1 + D 3 τ2 , 3 + G 1 u , 11 + G 2 u , 13 + G 3 u , 33 = ρu ,tt (A.5) 
where 
D 1 = ˆ E 0 , D 3 = ⌣ 

E 0 , G 1 = ˆ E 1 , G 2 = ˆ E 3 + ⌣ E 1 , G 3 = ⌣ 
E 3 (A.6) 

Since ˆ C 2 = C T 1 and ⌣ 
C 2 = C T 3 , then D 1 and D 3 defined in Eqs. (A.2) 

and (A.6) can be shown to be equivalent. 
Equations (A .1)-(A .6) are appropriate for an elastic body of arbi- 

trary shape. For an elastic film, we introduce the Taylor expansion 
of the transverse stress vector as 
τ F 

2 | x 2 = −h = τ F 
2 | x 2 = 0 − − h ∂τ F 

2 
∂ x 2 | x 2 = 0 −

+ ... + (−1) n h n 
n ! ∂ n τ F 

2 
∂ n x 2 | x 2 = 0 − + o( h n ) (A.7) 

where the superscript F denotes physical quantities/parameters in 
the film, h is the thickness of the deformed film with x 2 = 0 − be- 
ing its bottom surface. The upper surface of the film is assumed to 
be tractions-free, i.e. 
τ F 

2 | x 2 = −h = 0 (A.8) 
For a thin film, h is small. Then, in the first-order approxima- 

tion, Eq. (A.7) can be simplified to 
τ F 

2 = h ∂τ F 
2 

∂ x 2 ( x 2 = 0 −) (A.9) 
Combination of Eqs. (A.5) and (A.9) yields 

1 
h τ F 

2 + D F 1 τ F 
2 , 1 + D F 3 τ F 

2 , 3 + G F 1 u F , 11 + G F 2 u F , 13 
+ G F 3 u F , 33 = ρF u F ,tt ( x 2 = 0 −) (A.10) 

The assumption that the deformed film is perfectly bonded to 
the half-space means that τ2 and u are continuous across the in- 
terface x 2 = 0. Then Eq. (A.10) can be rewritten as 
τ2 
h + D F 1 τ2 , 1 + D F 3 τ2 , 3 +! G F 1 u , 11 + G F 2 u , 13 + G F 3 u , 33 = ρF u ,tt ( x 2 = 0) 

(A.11) 
The analysis by Benveniste (2006) indicates that by ignoring the 

terms D F 1 τ2 , 1 and D F 3 τ2 , 3 in Eq. (A.11), the direct thickness effect of 
the coating film is ignored, while the effects of elasticity and iner- 
tia are included. Thus, we obtain the effective boundary conditions 
of a deformed half-space overlain by a deformed film without the 
direct thickness effect as 
τ2 + h G F 1 u , 11 + h G F 2 u , 13 + h G F 3 u , 33 = h ρF u ,tt (A.12) 

The derivation of the effective boundary conditions is similar 
to the treatment in Mindlin (1963) and Tiersten (1969) . It can be 
proved that the effective boundary conditions (A.12) are consistent 
with the surface elasticity theory proposed by Gurtin and Murdoch 
( Gurtin and Murdoch, 1975 ). In the main text of the present paper, 
surface waves in a deformed elastic half-space overlain by a coat- 
ing film are investigated based on Eq. (A.12), which approximates 
the effect of the film in terms of the generalized boundary condi- 
tions. 

During the derivation of effective boundary conditions, we have 
assumed that the reference configuration is similar to the initial 
configuration in terms of the geometry and that the effective elas- 
tic tensor A F 0 is independent of the in-plane coordinates x 1 and x 3 . 
For an isotropic material, one possible biasing field meeting the 
above assumption is that the thin film and the half-space are equi- 
biaxially tensed/compressed with primary stretches ( λ1 , λ2 , λ1 ) ap- 
plied to the substrate and ( λ1 , λF 

2 , λ1 ) to the coating film, while 
keeping tractions-free on the plane X 2 = const. Then the deforma- 
tion gradient tensors of the substrate and the film are respectively 
F = 

[ 
λ1 0 0 
0 λ2 0 
0 0 λ1 

] 
, F F = 

[ 
λ1 0 0 
0 λF 

2 0 
0 0 λ1 

] 
(A.13) 

If the strain energy functions of the film and half-space are 
known as $F = $F ( F F ) and $= $( F ), the effective elastic coeffi- 
cients corresponding to the film and half-space can be obtained 
from Eq. (2) . For the restricted isotropic Hadamard material spec- 
ified by Eqs. (35) and (36) , the tractions-free conditions on the 
plane of X 2 = const. give unique solutions of λF 

2 and λ2 , the two 
being equal in the case considered in the present paper. We shall 
refer to the case that the deformation gradient tensor in both the 
substrate and the film are identical as the uniform pre-deformation 
state of the coated half-space. 
Appendix B 

In the absence of pre-deformation, Murdoch (1976) investigated 
the propagation of surface waves in an elastic half-space with 
material boundary based on the surface elasticity proposed by 
Gurtin and Murdoch (1975) . He found that if the surface elastic- 
ity satisfies 
µ0 / ρ0 < µ/ρ (B.1) 
then Love waves can propagate in the half-space, with the disper- 
sion equation being 
l 2 k 2 = (1 − s 2 ) / ( s 2 − s 2 0 ) 2 (B.2) 
where l = ρ0 / ρ , s 0 = v 0 / v b , s = v / v b , v 0 = √ 

µ0 / ρ0 , v b = √ 
µ/ρ , 

ρ0 and µ0 are respectively the surface density and surface shear 
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modulus defined in Murdoch (1976) . On the other hand, by setting 
µ0 = h µF and ρ0 = h ρF , our dispersion Eq. (62) of Love waves de- 
generates to 
k = µ√ 

1 − ρv 2 /µ
h ρF v 2 − h µF = v 2 b √ 

1 − v 2 / v 2 
b 

l( v 2 − v 2 0 ) = √ 
1 − s 2 

l( s 2 − s 2 0 ) (B.3) 
During the derivation of Eq. (B.3), the biasing field is dropped. 

It is obvious that Eq. (B.3) is equivalent to Eq. (B.2). 
Murdoch (1976) also obtained the dispersion equation of 

Rayleigh waves in an elastic half-space with material boundary. 
When the residual stress is absent, his dispersion equation be- 
comes 
CD (1 − ST ) k 2 + s 2 (CT + DS) k + [4 ST − (2 − s 2 ) 2 ] = 0 (B.4) 
where 
C = − l v 2 

v 2 
b , D = λ0 + 2 µ0 

ρv 2 
b + C 

S = √ 
1 − s 2 , T = √ 

1 − s 2 /s 2 p 
s p = v p / v b , v p = √ 

(λ + 2 µ) /ρ
(B.5) 

In Eq. (B.5), λ0 is another surface Lamé constant 
( Murdoch, 1976 ). The dispersion Eq. (50) of Rayleigh waves in 
the present paper is equal to Eq. (B.4) by appropriately choosing 
the coating parameters. This is presented below. 

The elastic constants of the undeformed isotropic coating film 
and substrate are respectively 
A F 

0 i jkl = λF δi j δkl + µF ( δik δ jl + δil δ jk ) . 
A 0 i jkl = λδi j δkl + µ( δik δ jl + δil δ jk ) , (B.6) 

Substitution of Eq. (B.6) into Eq. (51) yields 
−5F ρF v 2 h 2 k 2 + (−ρF v 2 S 2 − 1 

ST − 1 T µ + 5F S 2 − 1 
ST − 1 Sµ

)
hk 

+ ( S 2 − 1) 2 ST − ( S 2 − 2 ST + 1) 2 
(ST − 1) 2 µ2 = 0 (B.7) 

in which 
5F = 2 µF 

λF + 2 µF λF + 2 µF − ρF v 2 . (B.8) 
Eq. (B.7) can be rewritten as 

−ρF 
µ

v 2 5F 
µ

(1 − ST ) h 2 k 2 + s 2 (−ρF 
µ

v 2 T + 5F 
µ

S )hk 
+ [4 ST − (2 − s 2 ) 2 ] = 0 (B.9) 

Comparison between Eqs. (B.4) and (B.9) indicates that by set- 
ting 
λ0 = 2 h µF λF 

λF + 2 µF , µ0 = h µF , ρ0 = h ρF (B.10) 
the two equations are then identical to each other. It is noted that 
Murdoch (1976) also made a comparison of the surface elastic- 
ity theory ( Gurtin and Murdoch, 1975 ) with the Mindlin-Tiersten 
effective boundary conditions ( Mindlin, 1963; Tiersten, 1969 ) and 
derived a consistency condition, which is equal to Eq. (B.10). 
Chen et al., (2014) obtained a similar condition when investigat- 
ing the elasticity for a cylindrical surface. 
Appendix C 

In this appendix, the conditions for existence of FRWs and 
SRWs and the associated wavenumber ranges in a deformed coated 
half-space made of restricted isotropic Hadamard material are ob- 
tained based on Theorems 1 and 2 in the main text. 

Table C1 
Six different cases in Group A. 

Case Relation between λ1 and λ2 Relation between N 0 311 (0) and N 0 322 (0) 
A1 λ1 > λ2 N 0 311 (0) ≤ N 0 322 (0) < 0 
A2 λ1 = λ2 N 0 322 (0) = 0 , N 0 311 (0) ≤ 0 
A3 λ2 

2 (2 λ2 
2 − θ2 

2 ) /θ2 
2 ≤ λ2 

1 < λ2 
2 N 0 311 (0) ≤ −N 0 322 (0) < 0 

A4 ϑ 2 λ2 
2 < λ2 

1 < λ2 
2 (2 λ2 

2 − θ2 
2 ) /θ2 

2 N 0 322 (0) > 0 , N 0 311 (0) = 0 
A5 λ2 

1 = ϑ 2 λ2 
2 ( ϑ 2 ̸ = 1) N 0 322 (0) > 0 , N 0 311 (0) = 0 

A6 λ2 
1 < ϑ 2 λ2 

2 N 0 322 (0) ≥ N 0 311 (0) > 0 
1. Existence of FRWs 
1.1. Solutions of y 1 (0, k ) > 0 

Inequality y 1 (0, k ) > 0 is satisfied if both the inequalities 
M 11 (0) + M 22 (0) − k [ N 0 311 (0) + N 0 322 (0)] > 0 

and H 1 (0) k 2 + H 2 (0) k + H 3 (0) > 0 (C.1) 
hold simultaneously. In Eq. (C.1), H 1 ( v ), H 2 ( v ) and H 3 ( v ) are defined 
in Eq. (52) . From inequality (47) we obtain N 0 311 (0) ≤ N 0 322 (0) . For 
all the situations considered, we can obtain α(0) ≥ β(0) ≥ 1 or 
α(0) ≤ β(0) < 1, from which we are able to arrive at 
M 11 (0) ≥ 0 , M 22 (0) ≥ 0 (C.2) 

The equality in Eq. (C.2) may hold when λ1 = λ2 . Let us analyze 
the limit 

lim 
α(0) ,β(0) → 1 M 11 (0) = lim 

α(0) ,β(0) → 1 M 22 (0) 
= lim 

α(0) ,β(0) → 1 
[

α2 (0) − 1 
α(0) β(0) − 1 µJ −1 λ2 

2 
]

(C.3) 
By making use of the L’Hôpital’s rule, it can be proved that for 

all the cases we have [ α2 (0) − 1 ] / [ α(0) β(0) − 1 ] > 0 . Thus, instead 
of Eq. (C.2), we have 
M 11 (0) > 0 , M 22 (0) > 0 (C.4) 

In the following, the discussion on inequality (C.1) will be di- 
vided into two groups, i.e. Group A 
H 3 (0) > 0 (C.5) 
and Group B 
H 3 (0) ≤ 0 (C.6) 
1.1.1. Group A. We first consider Group A. The discriminant of in- 
equality (C.1) 2 is 3(0) with 3( v ) being defined in Eq. (57) 2 . 3(0) 
≥ 0 is true for all the cases in Group A, which is proved below. If 
N 0 311 (0) N 0 322 (0) < 0 , it is obvious that 3(0) > 0 due to inequality 
(C.5); If N 0 311 (0) N 0 322 (0) ≥ 0 , 3(0) can be rewritten as 
3(0) = [ N 0 322 (0) M 11 (0) − N 0 311 (0) M 22 (0)] 2 

−4 N 0 311 (0) N 0 322 (0) M 2 12 (0) (C.7) 
Since M 12 (0) is purely imaginary or zero, we obtain M 2 12 (0) ≤ 0 , 

based on which we have 3(0) ≥ 0 from Eq. (C.7). As a conclusion, 
we find 3(0) ≥ 0 is valid for all the cases in Group A. 

Furthermore, from Eq. (42) we can prove 
ϑ 2 ≤ (2 λ2 

2 − θ2 
2 ) /θ2 

2 ≤ 1 (C.8) 
where θ2 is defined in Eq. (41) 3 and ϑ2 is defined in Eq. (46) . The 
equality in Eq. (C.8) holds if and only if f ′ ′ ( J ) = 0. Based on inequal- 
ity (C.8) we further divide Group A into six different cases, which 
are listed in Table C1 . 

In Case A1, N 0 311 (0) ≤ N 0 322 (0) < 0 . Thus, inequality (C.1) 1 is sat- 
isfied automatically. The solution of inequality (C.1) 2 is 
k < k 1 (0) ∪ k > k 2 (0) (C.9) 
where k 1 ( v ) and k 2 ( v ) are defined in Eqs. (57) 3 and (57) 4 and the 
symbol ∪ denotes the union of sets. In view of N 0 311 (0) ≤ N 0 322 (0) < 
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0 and inequalities (C.4) and (C.5), we obtain k 1 (0) < 0 and k 2 (0) < 
0 in this case. Therefore the solution of inequality (C.1) is k ≥ 0 in 
Case A1. 

In Case A2, N 0 322 (0) = 0 and N 0 311 (0) ≤ 0 , then (C.1) degenerates 
to 
M 11 (0) + M 22 (0) − kN 0 311 (0) > 0 

and − N 0 311 (0) M 22 (0) k + H 3 (0) > 0 (C.10) 
If f ′ ′ ( J ) = 0 we have N 0 322 (0) = 0 and N 0 311 (0) = 0 . As a result, in- 

equality (C.10) automatically holds and its solution is k ≥ 0. If f ′ ′ ( J ) 
> 0, we have N 0 311 (0) < 0 . Inequalities (C.10) 1 and (C.10) 2 are satis- 
fied automatically due to inequalities (C.4) and (C.5). Consequently, 
the solution of (C.1) in Case A2 is k ≥ 0. 

In Case A3, we have N 0 311 (0) ≤ −N 0 322 (0) < 0 and inequality 
(C.1) 1 is satisfied automatically. The solution of inequality (C.1) 2 is 
k 2 (0) < k < k 1 (0) (C.11) 

By using inequalities (C.4), (C.5) and N 0 311 (0) ≤ −N 0 322 (0) < 0 we 
can prove k 1 (0) > 0 and k 2 (0) < 0. Thus the solution of inequality 
(C.1) is 0 ≤ k < k 1 (0) in Case A3. 

In Case A4, we have −N 0 322 (0) < N 0 311 (0) < 0 . The solution of in- 
equality (C.1) is 
k < k p0 ∩ k 2 (0) < k < k 1 (0) (C.12) 
where 
k p0 = M 11 (0) + M 22 (0) 

N 0 311 (0) + N 0 322 (0) (C.13) 
By using inequalities −N 0 322 (0) < N 0 311 (0) < 0 and (C.4), we can 

prove k p 0 > 0. In addition, we obtain k 1 (0) > 0 and k 2 (0) < 0 with 
the help of inequalities (C.4) and (C.5). Let us consider 
k 1 (0) − k p0 = 
[ N 0 311 (0) −N 0 322 (0)][ N 0 311 (0) M 22 (0) −N 0 322 (0) M 11 (0)] −[ N 0 311 (0)+ N 0 322 (0)] √ 

3(0) 
2 N 0 311 (0) N 0 322 (0)[ N 0 311 (0)+ N 0 322 (0)] (C.14) 

The inequalities N 0 311 (0) < 0 , N 0 322 (0) > 0 and N 0 311 (0) + 
N 0 322 (0) > 0 lead to 
N 0 311 (0) N 0 322 (0)[ N 0 311 (0) + N 0 322 (0)] < 0 (C.15) 

We can further prove that 
[ N 0 311 (0) − N 0 322 (0)][ N 0 311 (0) M 22 (0) − N 0 322 (0) M 11 (0)] > 0 

[ N 0 311 (0) + N 0 322 (0)] √ 
3(0) > 0 (C.16) 

Therefore, whether k 1 (0) − k p 0 as given in Eq. (C.14) is positive 
or negative depends only on the comparison of values of 
[ N 0 311 (0) − N 0 322 (0)][ N 0 311 (0) M 22 (0) − N 0 322 (0) M 11 (0)] (C.17) 
and 
[ N 0 311 (0) + N 0 322 (0)] √ 

3(0) . (C.18) 
Due to inequality (C.5), the absolute value of N 0 311 (0) − N 0 322 (0) 

is larger than that of N 0 311 (0) + N 0 322 (0) , and the absolute value 
of N 0 322 (0) M 11 (0) − N 0 311 (0) M 22 (0) is larger than that of √ 

3(0) . 
Therefore we conclude that 
[ N 0 311 (0) − N 0 322 (0)][ N 0 311 (0) M 22 (0) − N 0 322 (0) M 11 (0)] 

> [ N 0 311 (0) + N 0 322 (0)] √ 
3(0) (C.19) 

As a result, we obtain k 1 (0) < k p 0 . Thus, the solution of inequal- 
ity (C.1) in Case A4 is 0 ≤ k < k 1 (0). 

In Case A5, we know N 0 322 (0) > 0 and N 0 311 (0) = 0 . Inequality 
(C.1) degenerates to 
M 11 (0) + M 22 (0) − kN 0 322 (0) > 0 

and − N 0 322 (0) M 11 (0) k + H 3 (0) > 0 (C.20) 

with the following solution 
k < k p0 ∩ k < k p1 , (C.21) 
where ∩ represents intersection of sets and 
k p1 = H 3 (0) 

N 0 322 (0) M 11 (0) (C.22) 
From inequalities (C.4) and (C.5) we have 

k p1 > 0 and k p0 > 0 (C.23) 
Let us consider 

k p1 − k p0 = M 2 12 (0) 
N 0 322 (0) M 11 (0) − M 11 (0) 

N 0 322 (0) (C.24) 
We immediately know that k p 1 − k p 0 < 0 in view of inequalities 

(C.4). Thus, the solution of inequality (C.20) is 0 ≤ k < k p 1 . We can 
further prove that 

lim 
λ2 

1 → ϑλ2 
2 k 1 (0) = k p1 (C.25) 

Thus, the solution of inequality (C.1) in Cases A4 and A5 can be 
uniformly written as 0 ≤ k < k 1 (0). 

In Case A6, we know N 0 322 (0) ≥ N 0 311 (0) > 0 . The solution of in- 
equality (C.1) 1 is k < k p 0 and the solution of inequality (C.1) 2 is 
given in Eq. (C.9). By using inequalities M 11 (0) ≥ M 22 (0), (C.4), (C.5) 
and N 0 322 (0) ≥ N 0 311 (0) > 0 , we obtain 
0 < k 1 (0) ≤ M 22 (0) 

N 0 322 (0) ≤ M 11 (0) + M 22 (0) 
N 0 311 (0) + N 0 322 (0) = k p0 (C.26) 

and 
k 2 (0) ≥ M 11 (0) 

N 0 311 (0) ≥ M 22 (0) + M 11 (0) 
N 0 311 ( 0) + N 0 322 (0) = k p0 (C.27) 

Thus, the solution of inequality (C.1) is 0 ≤ k < k 1 (0). 
The discussions from Case A1 to Case A6 show that the solution 

of inequality (C.1) is k ≥ 0 if the biasing field satisfies λ1 ≥ λ2 , and 
the solution of inequality (C.1) is 0 ≤ k < k 1 (0) if the biasing field 
satisfies λ1 < λ2 . 
1.1.2. Group B. We now consider Group B. First we will prove that 
the inequality (C.6) implies the relation λ1 ≤ λ2 . Actually, if λ1 > 
λ2 , from the expressions of α and β in Eq. (41) and the relation 
(42) we obtain 
α(0) ≥ β(0) > 1 (C.28) 

H 3 (0) can be expressed as 
H 3 (0) = µ2 J −2 λ4 

2 
[ α(0) β(0) − 1] 2 { [1 − α2 (0)] 2 α(0) β(0) 
−[ α2 (0) − 2 α(0) β(0) + 1] 2 } (C.29) 

Owing to 
[1 − α2 (0)] 2 α(0) β(0) − [ α2 (0) − 2 α(0) β(0) + 1] 2 

> [1 − α2 (0)] 2 − [ α2 (0) − 2 α(0) β(0) + 1] 2 
= 4 α(0)[ α(0) β(0) − 1][ α(0) − β(0)] ≥ 0 (C.30) 

and inequality (C.28) we obtain H 3 (0) > 0. Consequently, the as- 
sumption H 3 (0) ≤ 0 means λ1 ≤ λ2 and as a result, N 0 322 (0) ≥ 0 . 
In addition, we obtain M 11 ( v ) ≥ M 22 ( v ), as a result of λ1 ≤ λ2 . 
The equation 3(0) = 0 can be regarded as a quadratic equation of 
N 0 311 (0) and its two solutions, denoted by 61 and 62 , are 
61 = −[ √ 

−H 3 (0) + √ 
−M 2 12 (0) ] 2 N 0 322 (0) 

M 2 22 (0) 
62 = −[ √ 

−H 3 (0) − √ 
−M 2 12 (0) ] 2 N 0 322 (0) 

M 2 22 (0) (C.31) 
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Table C2 
Six different cases in Group B. 

Case Ranges of N 0 311 (0) and N 0 322 (0) Ranges of 3(0) 
B1 N 0 322 (0) = 0 and N 0 311 (0) ≤ 0 3(0) ≥ 0 
B2 N 0 322 (0) > 0 and N 0 311 (0) < 61 3(0) > 0 
B3 N 0 322 (0) > 0 and 61 ≤ N 0 311 (0) ≤ 62 3(0) ≤ 0 
B4 N 0 322 (0) > 0 and 62 < N 0 311 (0) < 0 3(0) > 0 
B5 N 0 322 (0) > 0 and N 0 311 (0) = 0 3(0) > 0 
B6 N 0 322 (0) > 0 and N 0 311 (0) > 0 3(0) > 0 

in which 61 ≤ 62 ≤ 0. Thus, Group B also can be further divided 
into six cases, which are listed in Table C2 . 

Due to the inequality 
61 + M 11 (0) 

M 22 (0) N 0 322 (0) = 2 [ H 3 (0) − √ 
−H 3 (0) √ 

−M 2 12 (0) ] 
M 2 22 ( 0) N 0 322 ( 0) ≤ 0 

(C.32) 
we obtain 
61 ≤ − M 11 (0) 

M 22 (0) N 0 322 (0) (C.33) 
The equality in the above formula holds if and only if N 0 322 (0) = 

0 or H 3 (0) = 0. 
In Case B1, we have N 0 322 (0) = 0 and N 0 311 (0) ≤ 0 . If f ′ ′ ( J ) = 0 

we have N 0 311 (0) = 0 and inequality (C.1) 2 has no solution, which 
means inequality (C.1) has no solution, i.e. k ∈ Ø. If f ′ ′ ( J ) > 0, 
we have N 0 311 (0) < 0 and the solution of inequality (C.1) is k > 
H 3 (0) / [ N 0 311 (0) M 22 (0) ] . The limit 

lim 
N 0 311 (0) → 0 − H 3 (0) / [N 0 311 (0) M 22 (0) ] = + ∞ (C.34) 
implies that the solution of inequality (C.1) can be written uni- 
formly as k > H 3 (0) / [ N 0 311 (0) M 22 (0) ] . 

In Case B2, with the help of inequality (C.32) we obtain 
N 0 311 (0) < −N 0 322 (0) M 11 (0) / M 22 (0) ≤ −N 0 322 (0) . Inequality (C.1) 1 is 
satisfied automatically and the solution of inequality (C.1) 2 is given 
by formula (C.11). In addition, we can prove that k 1 (0) > 0 and 
k 2 (0) ≥ 0. Therefore the solution of inequality (C.1) is k 2 (0) < k < 
k 1 (0) in Case B2. 

In Case B3, 3(0) is negative. Therefore inequality (C.1) 2 has no 
solution, and as a result, inequality (C.1) has no solution, i.e. k ∈ Ø. 

In Case B4, we obtain −M 11 (0) N 0 322 (0) / M 22 (0) < N 0 311 (0) < 0 
from which we find that inequality (C.1) 2 cannot be satisfied, and 
therefore inequality (C.1) has no solution, i.e. k ∈ Ø. 

In Case B5, inequality (C.1) degenerates to inequality (C.20). Be- 
cause of inequalities (C.4) and (C.6), inequality (C.20) has no solu- 
tion, i.e. k ∈ Ø. 

In Case B6, the solution of inequality (C.1) 1 is k < k p 0 and the 
solution of inequality (C.1) 2 is formula (C.9). It can be proved that 
k 1 (0) ≤ 0 and k 2 (0) > 0. 

Let us consider 
k 2 (0) − k p0 
= [ N 0 311 (0) −N 0 322 (0)][ N 0 311 (0) M 22 (0) −N 0 322 (0) M 11 (0)]+[ N 0 311 (0)+ N 0 322 (0)] √ 

3(0) 
2 N 0 311 (0) N 0 322 (0)[ N 0 311 (0)+ N 0 322 (0)] 

(C.35) 
Due to the condition of Case B6 as indicated in Table C2 and 

M 11 (0) ≥ M 22 (0), we obtain k 2 (0) ≥ k p 0 . Consequently, inequality 
(C.1) has no solution, i.e. k ∈ Ø. 

As a conclusion of the above discussions in Group B, we find 
that if the biasing field satisfies N 0 322 (0) = 0 , the solution of in- 
equality (C.1) is k > H 3 (0) / N 0 311 (0) M 22 (0) ; if the biasing field sat- 
isfies N 0 322 (0) > 0 and N 0 311 (0) < 61 , the solution is k 2 (0) < k < 
k 1 (0); for the other cases in Group B, inequality (C.1) has no solu- 
tion. 

Table C3 
Solutions of y 1 (0, k ) > 0 in all situations. 

Conditions Wave number range 
λ1 > λ2 k ≥ 0 
λ1 = λ2 and H 3 (0) > 0 k ≥ 0 
λ1 = λ2 and H 3 (0) ≤ 0 k > H 3 (0) / N 0 311 (0) M 22 (0) 
λ1 < λ2 and H 3 (0) > 0 0 ≤ k < k 1 (0) 
λ1 < λ2 , H 3 (0) ≤ 0 and N 0 311 (0) < 61 k 2 (0) < k < k 1 (0) 
λ1 < λ2 , H 3 (0) ≤ 0 and N 0 311 (0) ≥ 61 k ∈ Ø

Table C4 
Six different cases of y i ( v L ,k ) < 0, ( i = 1, 2) . 

Case Value of γ Relation between 
N 0 311 (0) and N 0 322 (0) 

I γ < 1 − λ−2 
1 λ2 

2 N 0 311 ( v L ) ≤
N 0 322 ( v L ) < 0 

II γ = 1 − λ−2 
1 λ2 

2 N 0 311 ( v L ) ≤
0 , N 0 322 ( v L ) = 0 

III 1 − λ2 
2 λ−2 

1 < γ ≤
1 + (θ2 

2 −
2 λ2 

2 ) λ2 
2 λ−2 

1 θ−2 
2 

N 0 311 ( v L ) ≤
−N 0 322 ( v L ) < 0 

IV 1 + (θ2 
2 −

2 λ2 
2 ) λ2 

2 λ−2 
1 θ−2 

2 < 
γ < 1 − ϑ 2 λ2 

2 λ−2 
1 

−N 0 322 ( v L ) < 
N 0 311 ( v L ) < 0 

V γ = 1 − ϑ 2 λ2 
2 λ−2 

1 N 0 311 ( v L ) = 
0 , N 0 322 ( v L ) ≥ 0 

VI γ > 1 − ϑ 2 λ2 
2 λ−2 

1 N 0 311 ( v L ) > 
0 , N 0 322 ( v L ) > 0 

1.1.3. Groups A and B. The combination of discussions in Groups A 
and B gives the solutions of y 1 (0, k ) > 0 in various situations, which 
are summarized in Table C3 . 
1.2. Solutions of y 1 (v L , k ) < 0 

The inequality y 1 ( v L ,k ) < 0 holds if either 
M 11 ( v L ) − k [ N 0 311 ( v L ) + N 0 322 ( v L )] < 0 

or N 0 311 ( v L ) N 0 322 ( v L ) k 2 − N 0 322 ( v L ) M 11 ( v L ) k + M 2 12 ( v L ) < 0 (C.36) 
is satisfied, in which 
N 0 311 ( v L ) = −h µF λ−1 

2 + h µF J −1 ϑ 2 λ2 
2 + λ−1 

2 hµρF ρ−1 , 
N 0 322 ( v L ) = −h µF λ−1 

2 + h µF J −1 λ2 
2 + λ−1 

2 hµρF ρ−1 . (C.37) 
The inequality (C.36) is discussed in detail in the following by 

using the properties 
N 0 311 ( v L ) ≤ N 0 322 ( v L ) , M 11 ( v L ) ≥ 0 , M 2 12 ( v L ) < 0 (C.38) 
where 
M 11 ( v L ) = µJ −1 λ2 

2 β( v L ) M 12 ( v L ) = i µJ −1 λ2 
2 (C.39) 

The equality in (C.38) holds if and only if f ′ ′ ( J ) = 0. The dis- 
criminant of inequality (C.36) 2 is 3( v L ), with 3( v ) being defined 
in Eq. (57) 2 . 

The analysis of inequality (C.36) will be divided into six differ- 
ent cases, which are listed in Table C4 . The parameters γ and ϑ2 in 
Table C4 are, respectively, defined in Eqs. (57) 1 and (46) . It is noted 
that Cases III and IV imply the condition f ′ ′ ( J ) > 0, and therefore 
when discussing these two cases, we do not need to consider the 
equalities in formulas (C.38). 

In Case I, we have N 0 311 ( v L ) ≤ N 0 322 ( v L ) < 0 and therefore in- 
equality (C.36) 1 cannot be satisfied. In this case, 3( v L ) > 0 and 
the solution of inequality (C.36) 2 is 
k 1 ( v L ) < k < k 2 ( v L ) (C.40) 

In inequality (C.40), k 1 ( v ) and k 2 ( v ) are, respectively, defined in 
Eqs. (57) 3 and (57) 4 . By using inequality (C.38) we can prove k 1 ( v L ) 
< 0 and k 2 ( v L ) > 0. Thus the solution of inequality (C.36) in this 
case is 0 ≤ k < k 2 ( v L ). 
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Table C5 
Solutions of y 1 ( v L ,k ) < 0 in all situations. 

Conditions Wavenumber range 
γ < λ−2 

1 (λ2 
1 − λ2 

2 ) 0 ≤ k < k 2 ( v L ) 
γ ≥ λ−2 

1 (λ2 
1 − λ2 

2 ) k ≥ 0 
In Case II, we obtain N 0 322 ( v L ) = 0 and N 0 311 ( v L ) ≤ 0 . Due to 

formulas (C.38) 3 , inequality (C.36) 2 is satisfied automatically, and 
therefore the solution of inequality (C.36) is k ≥ 0. 

In Case III, we have N 0 311 ( v L ) ≤ −N 0 322 ( v L ) < 0 , and thus inequal- 
ity (C.36) 1 cannot be satisfied. When 3( v L ) < 0, inequality (C.36) 2 
holds naturally and as a result the solution of inequality (C.36) is 
k ≥ 0; When 3( v L ) ≥ 0, the solution of inequality (C.36) 2 is k < 
k 2 ( v L ) ∪ k > k 1 ( v L ). By using formulas (C.38) we can prove k 2 ( v L ) 
≤ k 1 ( v L ) ≤ 0. Consequently, the solution of inequality (C.36) is k 
≥ 0. Thus we have the conclusion that the solution of inequality 
(C.36) is k ≥ 0 in Case III. 

In Case IV, we have −N 0 322 ( v L ) < N 0 311 ( v L ) < 0 . When 3( v L ) < 0, 
inequality (C.36) 2 holds automatically and consequently the solu- 
tion of inequality (C.36) is k ≥ 0. When 3( v L ) ≥ 0, the solution of 
inequality (C.36) is 
k > M 11 ( v L ) 

N 0 311 ( v L ) + N 0 322 ( v L ) ∪ k < k 2 ( v L ) ∪ k > k 1 ( v L ) (C.41) 
Similarly, by using formulas (C.38) we can prove k 2 ( v L ) ≤ k 1 ( v L ) 

< 0, which means the solution of inequality (C.36) is k ≥ 0 when 
3( v L ) ≥ 0. Thus, in summary, we find the solution of inequality 
(C.36) is k ≥ 0 in Case IV. 

In Case V, we obtain N 0 311 ( v L ) = 0 and N 0 322 ( v L ) ≥ 0 . Because in- 
equality (C.36) 2 holds automatically in this case, the solution of in- 
equality (C.36) is k ≥ 0 in this case. 

In Case VI, we have N 0 311 ( v L ) > 0 , N 0 322 ( v L ) > 0 and 3( v L ) > 0. 
The solution of inequality (C.36) is 
k > M 11 ( v L ) 

N 0 311 ( v L ) + N 0 322 ( v L ) ∪ k 1 ( v L ) < k < k 2 ( v L ) (C.42) 
By using formulas (C.38) we can prove that k 1 ( v L ) < 0, k 2 ( v L ) > 

0 and 
k 2 ( v L ) > M 11 ( v L ) 

N 0 311 ( v L ) > M 11 ( v L ) 
N 0 311 ( v L ) + N 0 322 ( v L ) (C.43) 

Therefore the solution of inequality (C.36) is k ≥ 0 in Case VI. 
Based on the above discussions, we are able to draw the conclu- 

sions presented below: 1) if the coating film satisfies γ < λ−2 
1 (λ2 

1 −
λ2 

2 ) , the solution of y 1 ( v L ,k ) < 0 is 0 ≤ k < k 2 ( v L ); and 2) if the 
coating film satisfies γ ≥ λ−2 

1 (λ2 
1 − λ2 

2 ) , the solution of y 1 ( v L ,k ) < 
0 is k ≥ 0. The corresponding results are summarized in Table C5 . 

According to the results in Tables C3 and C5 , the wavenumber 
ranges of FRWs corresponding to various biasing fields and various 
surface coating parameters are concluded and listed in Table 1 in 
the main text. 
2. Existence of SRWs 
2.1. Solutions of y 2 (0,k) > 0 

y 2 (0, k ) > 0 is satisfied if either 
M 11 (0) + M 22 (0) − k [ N 0 311 (0) + N 0 322 (0)] > 0 

or H 1 (0) k 2 + H 2 (0) k + H 3 (0) < 0 (C.44) 
is satisfied. The analysis is also divided into Groups A and B, and 
each group is further divided into six different cases respectively 
as listed in Tables C1 and C2 . 

2.1.1. Group A. In Cases A1, A2 and A3, we obtain N 0 311 (0) + 
N 0 322 (0) ≤ 0 and consequently inequality (C.44) 1 holds automat- 
ically. Therefore in these three cases the solution of inequality 
(C.44) is k ≥ 0. 

In Case A4, we have −N 0 322 (0) < N 0 311 (0) < 0 and the solution of 
inequality (C.44) is 
k < k p0 ∪ k < k 2 (0) ∪ k > k 1 (0) (C.45) 
in which k p 0 is defined in Eq. (C.13), k 1 ( v ) and k 2 ( v ) are defined in 
Eq. (57) . Due to inequalities (C.4) and (C.5), k 1 (0) > 0 and k 2 (0) < 
0. Based on the discussion from formulas (C.14) to (C.19) we have 
k 1 (0) < k p 0 . Therefore the solution of inequality (C.44) is k ≥ 0 in 
this case. 

In Case A5, we have N 0 311 (0) = 0 , N 0 322 (0) > 0 . Then inequality 
(C.44) degenerates to 
M 11 (0) + M 22 (0) − kN 0 322 (0) > 0 

or N 0 322 (0) M 11 (0) k − H 3 (0) > 0 (C.46) 
Since N 0 322 (0) > 0 , the solution of inequality (C.46) is 

k < k p0 ∪ k > k p1 (C.47) 
where k p 1 is defined in Eq. (C.22). It has been proved that, in Case 
A5 the relation k p 1 < k p 0 is valid. Thus, the solution of inequality 
(C.46) in Case A5 is k ≥ 0. 

In Case A6, we obtain N 0 322 (0) ≥ N 0 311 (0) > 0 . The solution of in- 
equality (C.44) is 
k < k p0 ∪ k 1 (0) < k < k 2 (0) (C.48) 

It has been proved that in this case we have 0 < k 1 (0) < k p 0 
and k 2 (0) > k p 0 > 0. Thus, the solution of inequality (C.44) is 0 ≤
k < k 2 (0) in Case A6. 
2.1.2. Group B. In Case B1, inequality (C.44) 1 holds automatically. 
Therefore the solution of inequality (C.44) is k ≥ 0 in this case. 

In Case B2, we have obtained 61 ≤ −M 11 (0) N 0 322 (0) / M 22 (0) 
with the help of inequality (C.33). By further using M 11 (0) ≥ M 22 (0) 
> 0 and the conditions of Case B2 as indicated in Table C2 , we ob- 
tain N 0 311 (0) < −N 0 322 (0) . Thus inequality (C.44) 1 is satisfied auto- 
matically and the solution of inequality (C.44) is k ≥ 0. 

In Case B3, the discriminant of the left-handed quadratic form 
of (C.44) 2 is negative, i.e. 3(0) ≤ 0. When N 0 311 (0) = 61 , we have 
3(0) = 0 and consequently inequality (C.44) 2 cannot be satisfied. 
Due to 61 ≤ −M 11 (0) N 0 322 (0) / M 22 (0) ≤ −N 0 322 (0) , then inequality 
(C.44) 1 is satisfied automatically with the help of inequality (C.4). 
Thus when N 0 311 (0) = 61 , the solution of inequality (C.44) is k ≥
0. When 61 < N 0 311 (0) < 62 , we obtain 3(0) < 0. Thus inequality 
(C.44) 2 holds automatically, and as a result the solution of inequal- 
ity (C.44) is k ≥ 0. When N 0 311 (0) = 62 and N 0 311 (0) + N 0 322 (0) ≤
0 , inequality (C.44) 1 is satisfied automatically and the solution 
of inequality (C.44) is k ≥ 0. When N 0 311 (0) = 62 and N 0 311 (0) + 
N 0 322 (0) > 0 , the solution of inequality (C.44) is 
k < k po ∪ k < k 1 (0) ∪ k > k 1 (0) (C.49) 

By analyzing formula (C.14) we can prove that k 1 (0) < k p 0 and 
as a result the solution of inequality (C.44) is k ≥ 0. According to 
the above discussions, we find the solution of inequality (C.44) is 
k ≥ 0 in Case B3. 

In Case B4, when N 0 311 (0) + N 0 322 (0) ≤ 0 , we find inequality 
(C.44) 1 holds automatically, and consequently the solution of in- 
equality (C.44) is k ≥ 0; when N 0 311 (0) + N 0 322 (0) > 0 the solution 
of inequality (C.44) is 
k < k po ∪ k < k 2 (0) ∪ k > k 1 (0) (C.50) 

With the help of inequalities N 0 311 (0) + N 0 322 (0) > 0 , M 11 (0) ≥
M 22 (0) and N 0 311 (0) < N 0 322 (0) , we obtain k 1 (0) − k p 0 < 0 by ana- 
lyzing formula (C.35). Thus the solution of inequality (C.44) is k ≥
0 in Case B4. 
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Table C6 
Solutions of y 2 (0, k ) > 0 in all situa- 
tions. 

Conditions Wavenumber range 
λ2 

1 ≥ ϑ 2 λ2 
2 k ≥ 0 

λ2 
1 < ϑ 2 λ2 

2 0 ≤ k < k 2 (0) 
In Case B5, inequality (C.44) degenerates to inequality (C.46). 

Due to the condition N 0 322 (0) > 0 , inequality (C.46) 2 holds auto- 
matically. Thus, the solution of inequality (C.46) is k ≥ 0 in this 
case. 

In Case B6, the discriminant of the left-handed quadratic form 
of (C.44) 2 is positive, i.e. 3(0) > 0, and the solution of inequality 
(C.44) is given by formula (C.47). It has been proved that k 1 (0) ≤
0, k 2 (0) > 0 and k 2 (0) ≥ k p 0 in this case. Thus, the solution of 
inequality (C.44) is 0 ≤ k < k 2 (0) in Case B6. 
2.1.3. Groups A and B. From the above discussions of Groups A and 
B, we find the solution of y 2 (0, k ) > 0 only depends on N 0 311 (0) : 
if N 0 311 (0) ≤ 0 , i.e. λ2 

1 ≥ ϑ 2 λ2 
2 , the solution of inequality (C.44) is k 

≥ 0; if N 0 311 (0) > 0 , i.e. λ2 
1 < ϑ 2 λ2 

2 , the solution is 0 ≤ k < k 2 (0). 
The corresponding solutions are listed in Table C6 for various situ- 
ations. 
2.2. Solutions of y 2 (v L ,k) < 0 

y 2 ( v L ,k ) < 0 holds if both 
M 11 ( v L ) − k [ N 0 311 ( v L ) + N 0 322 ( v L )] < 0 , 

and N 0 311 ( v L ) N 0 322 ( v L ) k 2 − N 0 322 ( v L ) M 11 ( v L ) k + M 2 12 ( v L ) > 0 (C.51) 
are satisfied. The solutions of inequality (C.51) will be obtained ac- 
cording to the six different cases as listed in Table C4 . 

In Cases I, II and III, inequality (C.51) 1 cannot be satisfied due 
to N 0 311 ( v L ) + N 0 322 ( v L ) ≤ 0 . Thus, inequality (C.51) has no solution, 
i.e. k ∈ Ø. 

In Case IV, when 3( v L ) < 0, inequality (C.51) has no solution, 
i.e. k ∈ Ø; when 3( v L ) ≥ 0, the solution is 
k > M 11 ( v L ) 

N 0 311 ( v L ) + N 0 322 ( v L ) ∩ k 2 ( v L ) < k < k 1 ( v L ) (C.52) 
It has been proved that in this case k 2 ( v L ) ≤ k 1 ( v L ) < 0, which 

implies that inequality (C.51) has no solution. As a result, inequal- 
ity (C.51) has no solution in Case IV, i.e. k ∈ Ø. 

In Case V, we find N 0 311 ( v L ) = 0 , N 0 322 ( v L ) ≥ 0 . Inequality (C.51) 2 
degenerates to 
−N 0 322 ( v L ) M 11 ( v L ) k + M 2 12 ( v L ) > 0 (C.53) 

The above inequality cannot be satisfied because of inequality 
(C.4). Thus inequality (C.51) has no solution again in Case V. 

In Case VI, we find 0 < N 0 311 ( v L ) ≤ N 0 322 ( v L ) and 3( v L ) > 0. The 
solution of inequality (C.51) 1 is 
k > M 11 ( v L ) 

N 0 311 ( v L ) + N 0 322 ( v L ) (C.54) 
and the solution of inequality (C.51) 2 is 
k < k 1 ( v L ) ∪ k > k 2 ( v L ) (C.55) 

It has been proved that k 1 ( v L ) < 0 and k 2 ( v L ) > 
M 11 ( v L ) / [ N 0 311 ( v L ) + N 0 322 ( v L ) ] ≥ 0 in this case. Thus the solu- 
tion of inequality (C.51) is k > k 2 ( v L ) in Case VI. 

As a conclusion, inequality (C.51) has no solution from Case I to 
Case V, and only in Case VI it has the solution as k > k 2 ( v L ). The 
corresponding results are listed in Table C7 . 

By combining Tables C6 and C7 , we are able to obtain the 
wavenumber ranges of SRWs corresponding to various biasing 
fields and various coating film parameters, which are summarized 
in Table 2 in the main text. 

Table C7 
Solutions of y 2 ( v L ,k ) < 0 in all situations. 

Conditions Wave number range 
γ > 1 − ϑ 2 λ2 

2 λ−2 
1 k > k 2 ( v L ) 

γ ≤ 1 − ϑ 2 λ2 
2 λ−2 

1 k ∈ Ø
Appendix D. List of Symbols 

A 0 ijks , ( i, j, k, s = 1, 2, 3) Effective elastic tensor 
B r , B 0 , B t Reference, initial and current configurations 
∂ B r , ∂ B 0 , ∂ B t Boundaries in the reference, initial and current 

configurations 
C , D , S , T , s p , v p Parameters defined in Eq. (B.5) 
C 1 i j , C 2 i j , C 3 i j , ˆ C 1 i j , 
ˆ C 2 i j , ˆ C 3 i j , ⌣ 

C 1 i j , ⌣ 
C 2 i j , ⌣ 

C 3 i j Matrices of effective elastic coefficients, as 
defined in Eq. (8) 

f ( J ) Response function of the Hadamard material 
H, h Thicknesses of the coating film in the reference 

and initial configurations 
H 1 ( ν), H 2 ( ν), H 3 ( ν) Parameters (depending on the velocity v ) 

defined in Eq. (52) 
J Ratio of the infinitesimal volumes in the two 

configurations 
˙ K 0 i j (i, j, k, s = 1 , 2 , 3) Incremental nominal stress tensor after ‘push 

forward’ operation 
k p 0 , k p 1 Parameters defined in Eqs. (C.13) and (C.22) 
˜ k , s Dimensionless wavenumber and velocity 

k 1 ( v ), k 2 ( v ) Parameters defined in Eq. (57) 
p i , p i ( ϕ) ( i = 1, 2, !!!, 6) Eigenvalues of N and N ( ϕ) 
v b Parameter defined as v b = √ 

µ/ ρr 
v L Limiting speed 
y i ( v,k ) ( i = 1, 2, 3) Eigenvalues of Z ( v, k ) 
( X 1 , X 2 , X 3 ), ( x 1 , x 2 , x 3 ) Cartesian coordinates in the reference and 

initial configurations 
α, β , θ i Parameters defined in Eq. (41) 
ρ , ρr Mass densities in the current and reference 

configurations 
$, $F Energy density functions of the substrate and 

thin film per unit volume in B r 
δij Kronecker delta 
γ , 3( v ), 2 Parameters defined in Eq. (57) 
η Modulus ratio defined in Eq. (36) 
λ1 , λ2 Pre-stretches 
ϑ2 Parameter defined as ϑ 2 = (4 λ2 

2 − 3 θ2 
2 ) /θ2 

2 
61 , 62 Parameters defined in Eq. (C.31) 
a , b Amplitudes of displacement and stress 

potential vectors 
A , B Eigenvector matrices defined in Eq. (23) 
F Deformation gradient tensor of the 

pre-deformation 
G F 1 Matrix defined in Eq. (29) 

I Identity matrix 
˜ N , S , H , L Integral matrices defined in Eqs. (21) and (22) 

N, ξ Fundamental elastic tensor and state vector 
N ( ϕ) Fundamental elastic tensor in the rotated 

coordinate system 
N 1 , N 2 , N 3 Matrices defined in Eq. (18) 
M ( v ) Impedance matrix 
u Displacement vector of the incremental 

infinitesimal deformation 
N r , N 0 , n Outward normals in the reference, initial and 

current configurations 
X , x Position vectors in the reference and initial 

configurations 
Z ( v, k ) Matrix defined in Eq. (31) 
! Stress potential vector 
τ1 , τ2 , τ3 Incremental nominal stress vectors 
Ø, ∩ , ∪ Null set, intersection of sets, union of sets 
Superscript F Indicating physical quantities/parameters in the 

coating film 
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