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Based on Dorfmann and Ogden’s nonlinear theory of electroelasticity and the associated linear incremental
theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylin-
der under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a
radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement.
Such biasing fields make the originally isotropic electroactive material behave during its incremental mo-
tion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following
analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly
solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel func-
tions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of
electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as
well as the geometrical parameters of the hollow cylinder have significant influences on the wave propaga-
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1. Introduction

Soft electroactive materials are smart materials, which may be
produced by embedding electroactive particles in a rubber-like ma-
trix such as silica gel and silicone rubber (Bossis et al., 2001). They
have attracted considerable interests and are widely used to develop
high-performance mechanical devices such as actuators and artificial
muscles because of their rapid response and large deformation under
electrical stimulus (Anderson et al., 2012; Henann et al., 2013).

Nonlinear analysis of soft electroactive materials or structures is
quite complex due to the strong nonlinearity as well as the elec-
tromechanical coupling. The formulation of the general nonlinear
theory of electroelasticity dates back to the 1950s. Toupin (1956,
1963) first established the theories governing the static and dy-
namic responses of elastic dielectrics. Tiersten (1971) later extended
Toupin’s study to the case with thermal effect. The nonlinear inter-
actions between the mechanical and electromagnetic fields are well
expounded in the books by Landau and Lifshitz (1960), Nelson (1979),
and Maugin (1988), to name a few. Theoretical development of the
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nonlinear theories of electroelasticity has been revived in the recent
decade (Dorfmann and Ogden, 2005, 2006; McMeeking and Landis,
2005; Mockensturm and Goulbourne, 2006; Bustamante et al., 2009;
Suo, 2010) since new soft electroactive materials have been produced,
indicating a very tempting prospect of applications.

The study on waves in electroactive materials not only presents
significant theoretical interests but also is of specific practical im-
portance. Chai and Wu (1996) applied the Lothe-Barnett’s integral
formalism to the study of surface waves in a prestressed piezoelec-
tric material. The initial stress effect on the reflection coefficients
of waves in a prestressed piezoelectric half-space was discussed in
a recent paper by Singh (2010). Based on the nonlinear framework
for electroelasticity (Dorfmann and & Ogden, 2005, 2006) and
the associated linear incremental theory (Dorfmann and & Ogden,
2010b), Dorfmann and Ogden (2010a) analyzed the plane waves
propagating in a homogeneously deformed electroactive material
and the surface waves in a homogeneously deformed half-space
of incompressible electroactive material. Axisymmetric waves in
pre-stretched incompressible soft electroactive cylinders were ex-
amined in an exact manner by Chen and Dai (2012), also based on the
theoretical framework suggested by Dorfmann and Ogden. In a more
recent paper, Su and Chen (2014) extended Chen and Dai’s work to a
cylindrical shell and further considered the influence of the electric
field exterior to the shell. Almost simultaneously, Shmuel et al. (2012)
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showed a strong effect of the biasing fields on the propagation of
Rayleigh-Lamb waves in dielectric layers. Axisymmetric waves in
dielectric elastomer tubes under biasing fields were also studied by
Shmuel and deBotton (2013), where the biasing field is produced by
applying a voltage difference between the inner and outer surfaces of
the shell. This is quite different from that in Chen and Dai (2012) and
Su and Chen (2014), which actually results in nonuniform biasing
fields, and makes it impossible to obtain exact solutions.

In this paper, we aim at developing an exact analysis of non-
axisymmetric waves in an infinite soft electroactive hollow cylinder
subjected to uniform pre-stretch and/or biasing electric field. This is
an extension of our previous works mentioned above, where only the
simple axisymmetric case was considered. For the purpose of anal-
ysis, the theories of nonlinear electroelasticity and linear incremen-
tal field proposed by Dorfmann and Ogden (2005, 2006, 2010b) are
briefly reviewed. As in Chen and Dai (2012), uniform biasing fields
in cylindrical coordinates are assumed here to enable an exact analy-
sis. The three-dimensional equations governing the small-amplitude
non-axisymmetric waves in incompressible soft electroactive hollow
cylinders under uniform biasing fields are simplified and decoupled
by introducing three displacement potentials. An exact solution is
then derived in terms of Bessel functions. Numerical examples are
finally presented to show the effects of biasing fields and other pa-
rameters on the wave propagation behavior.

2. Basic formulations
2.1. Nonlinear theory of electroelasticity

Consider an incompressible continuous electroelastic body. We
denote the undeformed, stress-free configuration by B, and its
boundary by dB;, with N being the outward unit normal. Any mate-
rial particle, say X, is labeled by a position vector X. Let B; denote the
corresponding deformed configuration with 0B; the boundary and n
the outward unit normal. The deformation is described by the map-
ping x = x (X, t) where x is a continuous and twice differentiable
vector function. The deformation gradient is defined by F = Grad x
with the Cartesian components given by F,, = 0x;/0Xy. b = FF' and
¢ = FTF are the left and right Cauchy-Green tensors respectively. The
relations between the infinitesimal undeformed surface element dA
and volume element dV and those deformed ones are specified by
nda = JF-TNdA and dv = JdV respectively, where J = |F| is the deter-
minant of the deformation gradient F, also known as the volume ratio.
We have J = 1 for incompressible materials.

Under the ‘quasi-electrostatic approximation’, the appropriate
specializations of Maxwell’s equations in the absence of free body
charges and currents are

Curl E; = 0,DivD; =0, (1)

where E; = FTE and D; = F~'D are the Lagrangian counterparts of the
electric field vector E and electric displacement vector D, respectively.
Curl and Div are the curl and divergence operators defined in By, while
curl and div will be used for the corresponding operators in B;. The su-
perscript T denotes the matrix transpose. In the vacuum outside the
material, the electric field vector Ex and electric displacement vector
D= are related by

D* = &oE", )

where the constant ¢ is the permittivity of vacuum. Obviously, we
have

curl E* =0, divD* = 0. (3)

The Maxwell stress in the vacuum is defined by

Tt = g [E* SE — %(E* -E*)I]. 4)

In the absence of surface charges, the jump conditions across the
boundary read as

(E-E)xn=0, (D-D")-n=0. (5)
The equations of equilibrium, in the absence of body forces, are
DivT =0, (6)

where T = F-1t = 9Q/0F — pF~! is the nominal stress tensor, with T
being the total Cauchy stress tensor, 2(F, D;) is an amended energy
function defined per unit volume in the reference configuration, and
p is a Lagrange multiplier associated with the incompressibility con-
straint. p is identified as a hydrostatic pressure in Holzapfel (2000)
and Dorfmann and Ogden (2014).

The mechanical boundary condition is given by

Tn =ty + te, (7)

here t, is the applied mechanical traction per unit area of dB;, and
t. = v*n is the contribution to the traction due to the electric field
exterior to the body. Note that t. is an unknown quantity, to be deter-
mined from the governing equations and the jump conditions.

2.2. Linear theory for incremental field

Following the formulation of Dorfmann and Ogden (2010b), we
superimpose an incremental deformation x(X, t) along with an in-
crement in the electric displacement D; upon the deformed configu-
ration. The superposed dot is used in this paper to denote incremen-
tal quantities. The incremental forms of the governing Egs. (1) and (6)
are

curl EIO =0, div DIO =0, (8)

div T0 = PUWy, (9)

where u(x,t) =u(x(X,t),t) =x(X,t) should be noticed, .TU =
FT. Ey = FTE,, D)y = FD, are the ‘push forward’ versions of T, E;, D,
respectively. The linear incremental constitutive equations for an
isotropic electroactive material are

To = AgH + ToDyo + pH — pl,  Ejo = TGH + KoDy, (10)

where H = grad u is the displacement gradient. The components of
the instantaneous electroelastic moduli tensors in Eq. (10) are

Aopigj = FoaFapAaipj = Aogjpi- Dopig = FpaFgy Taip = Toipg:

Koij = Fa’i]FEj”(aﬂ = Koji. (11)
with
02Q 92Q 92Q
A Toip = Kyp = (12)

] YRy dFp FdDyg’ Dy, 0Dy
Obviously, they depend on the applied biasing fields. Thus, the bias-
ing fields can be a useful means to adjust the instantaneous material
properties, which in turn have a profound effect on the incremental
fields.

Similarly, the incremental forms of Maxwell’s equations outside
the material are

curl E* =0, divD*=0. (13)

The incremental fields E* and D* are related by D* = ggE*. Accord-
ingly, the incremental forms of the boundary conditions (5) and (7)
are

(Eo —E* —H'E*) xn =0, (D + HD* —D*) - n =0, (14)

Ton =ty + 7*n— 7*H'n, (15)

where tygda = t4dA, with t, being the applied mechanical traction
per unit area of dBy, and ©* is the incremental Maxwell stress given
by

t* = go[E* ® E* + E* @ E* — (E* - EDI]. (16)
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Fig. 1. An electroactive hollow cylinder under uniform electric and mechanical biasing
fields.

The incremental incompressibility constraint relation is

divu =0. (17)
3. Governing equations with biasing fields
3.1. Uniform biasing fields and instantaneous material properties

Consider an infinitely long hollow cylinder made of an incom-
pressible electroactive material. Its initial inner and outer radii are
R; and R,, which become r; and r, after deformation, respectively. We
now use cylindrical coordinate systems (R, ©®, Z) and (1, 6, z) to de-
scribe the undeformed and deformed configurations, respectively. To
simplify the problem and facilitate the exact solution, we consider a
uniform (pre-) deformation in the cylindrical coordinate system, as
shown in Fig. 1. Thus, we have

r=MR, 0=0, z=»A7Z (18)

where A1 (=r1;/R; =1,/R,) and A, are positive constants, specifying
the stretches in the radial and axial directions, respectively. The bias-
ing electric displacement vector D is uniform and taken to be aligned
with the axial direction. Then, we have

ar ar ar

dR RIO®  3Z

M0 0

F—|700 190 ro0 | _ |5 5 o

oR RO® 0Z

bz 0z 0z

oR RO® 0Z

A2 0 o0 0
b=c=|0 2 0|, D:{O}. (19)
0 0 A2 D,

The incompressibility of the material requires
da =A% (20)

According to Chen and Dai (2012), the non-zero components of the
total stress tensor and electric field vector in the hollow cylinder (r; <
r<ry)are

Trr = Tpg = 291)\.% + 292 (11)\.% — )\‘11) - D,
Tz = 2123 + 2R, (A3 — A3) — p + 22D + 4Q6A3D7,
E; = 2(Qah3% + Q5 + Q6A3) Dy, (21)

where  Qp = 99/3lm, and [ = tre,l, = [ (tre)? — tr(c?)]. I =
detc = 1, 14 = DI . D[, 15 = Dl . (CD]), 16 = D[ . (CZD[) are the six in-
dependent invariants (Dorfmann and Ogden, 2010a; Chen and Dai,
2012), For the current problem, I; = 22 + A3 is the only invariant to

be involved. We can deduce the electric displacement component D,
from Eq. (21)3 if the component of electric field E; is a priori known:

— EZ
2(Qu2,% + Qs+ Q6A2)

D, (22)
The jump conditions (5) at r =r;, where n; = (-1,0,0) and those
at r=r,, where n, = (1,0,0) become E; =E;,Ej = Df =0, from
which and in view of Eq. (4), we have for the exterior electric fields
(r<rjorr>r,)

E;, = Ejy = E; = 2(QaA5% + Q5 + Q6A3) Dy,
D;, = DTZ = 2¢&) (94)\,2_2 + Qs + QSA%)DZ,
Torr = T:b‘é) = —Tg = Tipp = Tfée =-T

= —260(QuAy? + Qs + QG)»%)ZDE, (23)

%
izz

where the first subscript o or i indicates the outer or inner electric
field.

It is apparent that, different from Shmuel and deBotton (2013), the
stress and electric fields in the hollow cylinder and vacuum outside
the material are all uniform. In this case, the balance laws (3) and
(6) are satisfied automatically. In general 7 # 7, and/or T # T
and additional mechanical tractions may be required to act on the
boundaries of the hollow cylinder in order to satisfy the boundary
conditions.

The instantaneous electroelastic moduli tensors Agjj, Kojj, ok
can be evaluated according to Eq. (10), of which the nonzero com-
ponents are given in Appendix A for easy reference.

3.2. Boundary value problem of the incremental fields

Consider a small-amplitude non-axisymmetric wave motion su-
perimposed on the underlying deformed configuration of the hollow
cylinder as prescribed in the previous subsection. Thus, we have
u=1ur,0,z,t)e +ug(r,0,z,t)e; +u,(r,0,zt)e,,

Dio = Dior (. 6. 2. t)e; + Digg (1. 0. 2. )€y + D1 (1.6, 2. 1),
p=p(,0,z1t). (24)

Accordingly, the displacement gradient is calculated to be

[Qu, 1/ 0u, y uy ]
or r\oag ? 0z
au 1/ 0u au
H= %2 2[%29% g% . (25)
a7 ( 30 “”) 6z
u, 1 0u, ou,
L or T30 0z

The non-zero components of the incremental stress and electric fields
are obtained from Eq. (10) as

1 8”9

. ou
Torr = (Aot + P)T; +A01122; (9 + Ur)

ou . .
4-/‘\011333fzZ + Co113Dyo; — P.

i du 1/ 0u
Toge = Aonzzafrr + (Aot + p)? (809 + Ur)
au . )
+Ao113387; + TonsDio, — P.
; ou 1/ du u
Toz = A011338frr +A01133? (890 + ur) + (Ao3333 + P)TZZ

+To333D10, — B,

. ou, 1/(0du
Torg = Aomzaf: + (Ao1221 + P); <89r - Ue)s
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. Ju ou :
Tor; = (Ao1331 + P)T; -i-/‘\013138frZ + C0131D0r

1/ du, au
Togr = Aot212— ( 50 Ue) + (Aotan + P)Tre’

10u,
Toaz Ao13i3— 90 ° + (Aoi3st +P) 8 +F0131D108’

. a .

Tozr = Aoz131 ETZT + (Ao1331 + P)T; + Co131Dior,

. ou 10u .

Tozo = Aozt Te + (Ao +P) - TQZ + Fo131Diop.
ur  Juy

Ejor = Fom( 52 T ) + Ko Doy,

. ou, 10u .
Ejpp = Fom( 829 + r802> + Ko11Dyop

- 0 0
iz = Fona[ S+ ( S+

Egs. (8),(9)and (17) can be written in the following component form

ou .
)] + Fo333722 + KozsDjo,.  (26)

10Eg,  3Eis _ 0

r 00 0z ’

OE, 0, . OEp , Ep 10Eg

oz~ ar > or Tro o rag O 7)
dDyoy dDygp 8Dlo.z _

o+ (T + b ) + = —o0, (28)

8TOrr n 1 8TOGr + TOrr - TOQ@ + aTOzr 9%u,

ar r 060 r 0z =p at2”’
0Torg | 10Togs | Toor+Torg | 9Tog  9%ug
or r 00 r 0z otz ”’

0 TOrz 10 TOOZ 0 TOzz TOrz _ 0?u,

ar Y190 "oz T T Pare (29)
Ju, duy ou, _
ar + — ( 30 + r) + ﬁ 0. (30)

The non-zero components of the incremental Maxwell stress are de-
rived from Eq. (16)

i—;qrr = .;100 = _t;lll L

=0(m=o,1i). (31)
We assume that there are no applied incremental mechanical trac-
tions on the two cylindrical surfaces, i.e., tyg = 0 (r = 1o, 1;). Then, on

the boundaries n; = (-1, 0, 0) and n, = (1, 0, 0), the electric bound-
ary conditions (14) lead to

k% L
Tmrz = Tmzr = SOEszmr’ Tmor

. . L1 ou . s N u

Ejos _Ema - Emz? 892 =0, Eyq, _E Emz 9z z = =0,

. Jau . .

Dior + Dz =5 - =Dy, =0(r=rm: m=o,i); (32)

while the mechanical boundary conditions (15) become
o s % « our : . ouy
Torr = Ty — tmrrWﬂ Toro = Tmor — fmga T ( 90 —Ug ),

. . ou .
Torz = Tig — Topy e o "(r=rn; m=o,i). (33)

Similarly, the electric field in vacuum exterior to the material should
satisfy the following electric balance equations

10E;, OE.,

T 90 3z O

OEn,  OEn, ny | Eng 10E,
5z " ar % T Trae 0 (34)

8D;‘nr 1 annO 5 BD;u
ar +r( 56 +Dn ) az 0 (33)

where D:u' = SOE;U (m=o,i; j=r,2).

4. Exact wave solution and dispersion equation
4.1. Simplification of equations
From Eqgs. (27) and (34) we deduce the existence of electric poten-

tials ¢ and ¢;;, such that

d 1 d . 0
ai:’ 106 = 82 loz = _87‘? (36)

_— 8¢m o 13¢m e ao;, o
E: = ar Erp=— 50 E:, =— p (m=o,i). (37)

In this way, Eqgs. (27) and (34) are automatically satisfied. From
Eq. (35), we know that ¢, should satisfy the Laplace’s equation

., 0%
V2, + St =0

where V2 =02/0r2 + (1/r)d/0r + (1/r%)3%/00% is the two-
dimensional Laplace operator. Simultaneously, the constitutive

relations (26) can be rewritten in terms of the electric potential ¢
as

. ou ou 0
D10r=€15< 8zr 3rz) —8117?,
. ou 10du 10
D =G24 155 ) et G-
. ou ou, ou, 0
Dy, = 631|: arr + = ( 899 +Ur)i| +es3 - — 63 aq;
¢

1( duy ou, .
Torr = (Cn1 +P) ar +C12 80 +C13 5= 8z +tesig =P,

ElOr = -

(m=o,1i), (38)

ou, 0 ou, 0 .
Toge = C12 7~ o -+ (Cit +p) = < 81199 +Ur) +em— Z +es 8(5 p.

ou, ou, 0 .
Tozz = C13 5~ ar +C13<809 +Ur)+(C33+P) 5, Tes de) D,

dug ou
TOrO—CMa +(ci5+p)= (80 Ue))v

. 1(0u du
Toor = €14 (Mr - ue) + (€15 + p)a—f,

9
Torz = (C C e
orz = (551+P)8 +5523 +eso o,
duy 3¢
Toar = Cs53 =— C e
0zr = (55375 -+ (Css1 +p) 8 Z +e15n 3
1 0u, 10¢
T c 2 4 (Css1 + + e
00z = (552 5 (€551 P) 8 157759
: a auz 106
T; C C e 39
020 = €553 75~ +(551+P) + 57 50° (39)
where
en = 1/Kot1, €33 =1/Kpz3, €15 =—To31€11,
e31 = —[on3€33, €33 = —T333833, €11 = Aot + Dorizest,
12 = Aotz2 + Donzesi, €13 = Aoz + orizess,
€33 = Ap3333 + ['0333€33,  C551 = Ap1331 + Lorz1€1s,
Cia = Ao1212, €15 = Ao1221,
Css2 = Aoiz1z + oizieis,  Cs53 = Agzizi + Doineis. (40)
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Substituting Eq. (39) into Egs. (28) and (29), we obtain
02 02
|:915V2+(€33—€31 e15)8 21| (811V 335, 2>¢
2 10 1 1 02 02
i\ Trar ) T MRger oz |
C1s + Cro) - 0° e + ey 2
| s+ ) aam—(Cnt ) g 55 (U

26 op o
et es) g~ 5 =P

92y
(C13+C551)8 8
02 0
(C15+C12)?W+ (cnn +C14)r787«9 ur
02 10 1 1 92 02
|\ e Trar TR )t p e T |t

1 0%u 1 92 19p 02
+ (€13 + Cs51) = 8982+(631+815) ¢ b_ R

900z r00 "oz
2 19 1 9%u,
(€551 +C13)<8r82 +7 82)llr-i- (c13 +C551) 9992
2 19 1 02 92
o2\ T rar T rRez )Tz |
o (02 10 192N 9 p
T1o\ar T rar T e ) Tz
op 9%,

The above four equations along with the incompressibility constraint
(30) govern the incremental motion of the electroactive hollow cylin-
der in terms of five unknown functions u,, uy, uz, ¢, p. It can be found
that these equations are similar in form to those for the infinitesi-
mal motion of a transversely isotropic elastic body (Ding et al., 2006).
Thus, we may introduce the following three displacement functions
(Ding et al., 2006)

10y 0G Yy 190G

U= — oo, Up=—— —— o

or raf’

By substituting Eq. (42) into Eqs. (41) and (30) and noticing the re-
lation cq; — ¢12 — €15 = €14, We can transform the original governing
equations into

92 02
<C14V + (553 7= 922 e 2 ) Y =0,
I 2 02
— — 2 —_— [E—
(e — €13 — C551) V= + Cs53 72~ Paip | G

U, =W. (42)

9

— (€31 +915)E +p=0,
I 32 02
€552V + (€33 — C13 — Gs1)g5 ~Paa (W

92 p
+ <915V2 +€33822>¢ ~5, = 0,

02 92
|:€‘15vz + (e33 —e31 — 615)822i|W - (811vz + 833822)¢ =0,

aw
-ViG+ - =0. 43
+ 3 (43)
It is seen that the resulting equations are much simpler than the orig-
inal ones. Moreover, the function v is successfully decoupled from
the other four unknown functions, which is also very beneficial to
the understanding of the induced wave motion.

4.2. Exact non-axisymmetric wave solution

We assume the traveling wave solution in the following form
Y= Iﬁ(r) sin(nf) cos(kz — wt), G = G(r) cos(nf) cos(kz — wt),
W =W (r) cos(nf) sin(kz — wt), ¢ = ¢(r) cos(nd) sin(kz — wt),
p = p(r) cos(nb) cos(kz — wt), (44)
where w is the angular frequency, and n and k are the circumferen-
tial and axial wave numbers respectively. It is noted that n = 0 cor-
responds to axisymmetric waves (for which ¢ = 0 and uy = 0) that

have been studied by Chen and Dai (2012). By substituting the above
wave solution into Eq. (43) and making use of (43)s, we obtain

(A+ad)y =0, (45)

[(cr1 — €13 — Cs51) A — G553k + p?]G — (es1 + 915)k¢5 +p=0,
[css2 A — (€33 — €13 — Cs51)k? + p* W

+ (8151\ — e33k2)¢ + kf) =0,
leisA — (e33 — e — eg5)K?IW — (e A — e33k*)p = 0,

—AG+kW =0, (46)
where A =d?/dr? + (1/r)d/dr —n?/r?, and  of = (pw? —
Cs53k2)/c14 is the radial wave number of the shear waves that
can be expressed by the function ¥ only. It is easy to show that
the dilation associated with the motion represented by 1 vanishes,
indicating the motion is purely shear and elastic.

Eq. (45) is a Bessel's equation of order n, whose solution is

W = AgJn(ctar) + BaYn(agr), (47)

where J,( - ) and Yy( - ) are the Bessel functions of the first and second
kinds of order n, respectively. Eq. (46) looks more complex, but its
solution can be sought by assuming (Ding et al., 1997)

G G D;
w C D
5 =Jn(ar) cj + Ya(ar) Dj , (48)
ﬁ Cy Dy

where « is the radial wave number for the coupled waves associated
with the other four functions, and C; and D;(j = 1 ~ 4) are constants
to be determined. It is noted that for these coupled waves, the ax-
ial component of the rotational vector vanishes. Substituting the so-
lution into Eq. (46) yields a set of linear equations about the 8 un-
known constants. For non-trivial solutions to exist, the determinant
of the matrix consisting of the coefficients of C; and D;(j =1~ 4)
must vanish, giving rise to the following characteristic equation

gn 0 g3 1
0 22 g3 &
—o, 49
0 g3 g3 0 (49)
g1 82 O 0

where

g1 = —(C11 — €13 — Cs51)” + pw? — 553k, g13 = —(e31 + es)k,

82 = —C550%+ pw? — (€33 — €13 — C551)K?, g3 = —ey50% — exzk?,
g32 = e1sa” + (e33 — 31 — ey5)k?, g33 = —ena® — ex3k?,

Sn =0 gn=gu=k (50)
The elements of the determinant in Eq. (49) are functions of k, w and
o.Once k and w are given, we can obtain from Eq. (49) three different

a's with Re[e;] > 0 or Re[a;] = 0 and Im[c] > 0. Thus, the complete
coupled wave solution can be written as

3
- g;j [Agn(otjr) + BjYy (o). (51)

i=1

h=TR SN gl (]

3j
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where f,j(n=1,2,3) are ratios between the constants and can be
obtained as
2

by = o by — 615(1}2 + (e33 — e3; —ey5)k?
U= k-~ 2= 811&’]2 + e33k? v
1
Bsj = _E{[’sz - Csszolj2 — (c33 — €13 — Cs51)K?] By
— (e150 +e33k*) By} (j =1,2,3). (52)

It is noted that we do not distinguish above different cases regarding
the value of « (i.e., real, imaginary or complex) as Mirsky (1965) did.
This is simply because the present computational software such as
Mathematica or MatLab can perform the complex numerical calcula-
tion directly and accurately.

Similarly, we assume the solution of ¢}, (m = o, i) in the form

¢ = ¢ cos(nf) sin(kz — wt). (53)
Substituting into Eq. (38) leads to a modified Bessel’s equation

(A =)y, =0. (54)
Its solution is

bpy = AZn(kr), (55)

where A}, (m=o,i) are constants to be determined. Note that for
m = o, we have Z,(-) = K, (-) which is the modified Bessel function of
the second kind of order n; while for m =i, Z,(-) = I;(-) is the modi-
fied Bessel function of the first kind of order n.

With the aid of Egs. (44) and (55), the stresses, electric displace-
ments and electric fields in the hollow cylinder and vacuum exte-
rior to the material can be obtained. These expressions are given in
Appendix B for reference.

4.3. Dispersion relation

Substituting the stresses, electric displacements and electric fields
into the boundary conditions (32) and (33), noting that (32); is equiv-
alent to (32),, we obtain for non-trivial solutions to exist

|dij| = 0@, j=1~10), (56)

which is the dispersion equation. The elements of the determinant,
d;;, are given in Appendix C.

If we consider a solid cylinder, the solution should be kept finite
atr=0.ThenB;j =0 (j =1~ 4), and ¢; = 0. The satisfaction of the
boundary conditions at the outer surface leads to

dy dip diz diy dyg
dy  dy  dyz dy  dy
d3; d3pp diz  diyy  dig| =0. (57)
dyy dip  dsz day  dyg
ds; dsp ds3  dsy dsg

ij»

5. Numerical examples and discussion
5.1. Material model

For numerical illustration, we adopt the modified neo-Hookean
model (Dorfmann and Ogden, 2010a) with the following free energy
function

1 1
Q= jﬂ(h =3)+ —la + yals). (58)
)

The first term is the energy function for the classical neo-Hookean
elastic material, with p being the shear modulus of the material. The
second term accounts for the interaction between the finite deforma-
tion and the electric field, and y 1, ', are two dimensionless electroe-
lastic coupling parameters. If y; = 0 the energy function corresponds
to the so-called ideal dielectric elastomer (Zhao and Suo, 2007).

We obtain from Egs. (21) 1 5, that

Trr = Tgy = l/v)\% —D Tz= l/«)\% —-p+ 2861V2D§7 (59)

which shows that the parameter y; does not affect the total stress,
which can be immediately seen from the energy function (58) be-
cause I, does not depend on F, and y, is a measure of how the
stresses in the material are influenced by the electric field. If y, = 0,
the stress is independent of the electric field.

The Maxwell stresses and electric fields outside the body can be
obtained from Eq. (23)

E;, = Ej, = E; = 2¢5" (nA3° + 12) Dz,
D;, = Djy = 2(y1A3% + y2)Dz.
2 .
TrT1rr = tr;@@ = _‘Crzzz = _286] ()/1)\42_2 + VZ) Dg (m =0, 1)~ (60)

It is apparent that the parameter y; characterizes the electric re-
sponse of the material in terms of the deformation.

The material parameters defined in Eq. (40) may be evaluated in
respect of the model (58) as

2
C11 = Cia = WAY, Cp=C13 =015 =0,

8¢ 1y2D2
€33 = pAT4 +2e1y,D2 — 0 1272
33 = WA + 285 V2L, J/l)t?-i-l/z
28—1 2D2
Cs51 = —%’ Cssa = JLAT + Css1,
VIALT + 02
Css3 = wA + 2551V2D§ + Cs51,
e &0 )
n=—F—>» &3=—F7—F
2(nA2 + 1) 2(y118 + 12)
D 2y,D
e15=—#, e3 =0, e33=—#. (61)
VIATT + 12 ViAl + V2

One may notice that, with the chosen constitutive law, c;, = cy3 =0,
which looks a little strange at first glance since they generally corre-
spond to the Poisson effects in a usual elastic material. However, it
does not indicate the disappearing of the Poisson effect (with regard
to the incremental motion), because of the constraint of material in-
compressibility for incompressible materials.

We further assume here that there is no applied mechanical trac-
tion on the two cylindrical surfaces. Then p can be determined as
p= P‘/)‘% — Tor = M)‘% - T{;r-

The numerical results will be displayed in terms of the following
non-dimensional quantities

. a)ho

w = .k = kho,
Cr

8 = D/ J/Ti%o. (62)

where hy = R, — R; is the initial thickness of the hollow cylinder, and

- \/E (63)

is the transverse wave velocity in the undeformed isotropic electroac-
tive material.

52. n=0

We first examine the axisymmetric waves for which n = 0. In
this case, the displacements are independent of 6 and the dispersion
Eq. (56) can be represented as the product of two determinants

$iS, =0, (64)

where
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—=0.5

Fig. 2. Frequency spectrum for the first five axisymmetric torsionless wave modes in
a solid cylinder.

dn dip  diz dis  dig  dyp dig dio
ds; d3; dz  dss dg  dyy dy dspo
dyy dep  diz  dys  dsg  dyy dag dao
5, = ds; ds; ds3 dss  dss  ds;  dsg  dsio
dei dez des des des de7  deg  deio |
dgy dg; dgs dgs dgg dg;  dgg  dgyo
doy do; do3 dos dgg dg7  dgg  doro
din  diz  dios  dios  dis  diz  die  dioro
dys  dag

S, = . 65
2= dy  dog (65)

The dispersion equation
$51=0 (66)

represents the #-independent coupled motion with both radial and
axial displacements but without the circumferential displacement
(i.e., uy = 0). On the other hand,

S2=0 (67)

corresponds to the purely torsional motion with the only displace-
ment component uy that is also independent of 6. It should be noted
that the axisymmetric torsional wave solution may be obtained by
exchanging cos (nf) and sin (nf) in Eq. (44) and then letting n = 0.

When a solid cylinder is considered, the dispersion Eq. (67) de-
generates to

52 = d24 = 0, (68)
which can be rewritten as
)\.]Ol4b]()(0{4b) — 2]1 (054b) =0. (69)

Furthermore, if we omit the effect of biasing fields (A = 1, D, = 0),
we obtain

2 _ K2 2
a2 = PO ZOn G g2 (70)

Cia c?

This is the classical result for torsional waves in elastic cylinders
(Achenbach, 1984).

Figs. 2 and 3 display respectively the dimensionless frequency @
and phase velocity ¢ = @ /k as functions of the dimensionless wave
number « for the first five axisymmetric torsionless wave modes in
the soft electroactive solid cylinder with axial constraint A, = 1 sub-
jected to different biasing electric fields. The dimensionless electroe-
lastic coupling parameters are taken to be y; =1, y, = 3. It can be

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Fig. 3. Phase velocity curves for the first five axisymmetric torsionless wave modes in
a solid cylinder.

seen that all the modes are dispersive and the fundamental mode is
the only one with no cut-off frequency. The case § = 0 corresponds to
the particular case for which there is no biasing electric field. In this
case, we actually obtain the dispersion curves in the two figures for
the family of axisymmetric torsionless wave modes in an elastic solid
cylinder. However, compared with Royer and Dieulesaint (2000), we
find, due to material incompressibility, the branches associated with
dilatational motion are not included here. In the limit as x — 0, the
phase velocity of the fundamental mode with the lowest frequency
becomes equal to ¢ = +/3 for § = 0. This coincides with the classical
result for an elastic solid cylinder (Mirsky and Herrmann, 1958). If we
choose the dimensionless material constants to be y; = 1.5, 5, =2,
we obtain the same results, indicating that in the absence of elec-
tric field (6 = 0), the electroelastic coupling parameters have no in-
fluence on the wave propagation characteristics. This actually can be
observed directly from the analytical results in Eq. (61). We also note
that, although the instantaneous dielectric constants e;; and e33 are
still affected by the electroelastic coupling parameters, we have in
this case e;; = 0. Thus, as can be seen from Eq. (46), the elastic and
electric fields are decoupled from each other. The influence of the bi-
asing electric field can be seen from Fig. 3 clearly: The phase velocity
increases with the magnitude of the biasing field for both short and
long waves. Moreover, there is a region that for long waves (with a
small value of k) the biasing electric field has a relatively small ef-
fect on the dispersion characteristics, while for short waves, the bi-
asing electric field changes shape of the dispersion curve quite ob-
viously. This region starts later for higher modes. In particular, the
velocity curve of the fundamental mode under a relatively large bias-
ing electric field becomes nonmonotonic — The phase velocity first
increases with the wave number, then arrives at a maximum, and
finally decreases with the wave number. A similar observation can
be obtained from the results presented in Shmuel et al. (2012). Such
a nonmonotonic variation of dispersion curves should be a result of
complex wave interaction in terms of geometric boundaries and ma-
terial properties.

Of special interest is the fundamental mode which is the most im-
portant from a practical viewpoint since the vibration mode with the
lowest frequency will be easily excited by the environmental distur-
bance which is usually with a low characteristic frequency. We there-
fore will present the results for the fundamental mode only in the
following. Figs. 4 and 5 give the results for axisymmetric torsional
waves. We can see from Fig. 4 that there is a cutoff frequency w
(~ 5.13) at k = 0. That is, only for frequency @ > @, there will be
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Fig. 4. Lowest frequency versus wave number for axisymmetric torsional waves in a
solid cylinder.

4 T T

351

Fig. 5. Phase velocity versus wave number for axisymmetric torsional waves in a solid
cylinder.

a torsional wave propagating in a solid cylinder. While for @ < @,
the wavenumber becomes imaginary, which corresponds to a non-
propagating disturbance. The special case @w = @, represents the
transition from propagation to non-propagation. In this case, the solid
cylinder is in uniform vibration since ¥ = 0 indicates the wavelength
is infinitely long.

Since the biasing electric field leads to an obvious electroelastic
coupling, making the electroactive material behave like piezoelectric
material, the so-called piezoelectric stiffening effect (Yang, 2004) can
be clearly identified from these figures.

53. n#0

Of the flexural waves with the components of displacement de-
pendent on @ the family of waves specified by n = 1, known as the
fundamental flexural waves is the most important. Figs. 6 and 7 show
the curves of fundamental frequency and velocity versus wave num-
ber for the fundamental waves in the hollow cylinder subjected to
different levels of pre-stretch. Here we fix the normalized electroe-
lastic coupling parameters as y; = 1, y, = 3, the biasing electric dis-

Fig. 6. Lowest frequency versus wave number for flexural waves in a hollow cylinder
(n=1/3).

4 . . . . . . . . .
A,=0.7

35 2,208
2,713

Fig. 7. Phase velocity versus wave number for flexural waves in a hollow cylinder
(n=1/3).

placement as § = 0.5, and the radius ratio of the cylindrical shell as
1 = R;/Ro = 1/3. The influence of the biasing mechanical field is evi-
dent: As the pre-stretch increases a rise in the frequency and velocity
is exhibited. However, for a finite structure, the pre-stretch does not
always improve the global rigidity of the structure (and hence the fre-
quency) since a competition exists between the increasing size of the
structure and the increasing elastic constants of the material (Wang
et al., 2013).

To examine the influence of the geometry of the hollow cylinder,
the frequency and phase velocity curves for different radius ratios are
compared in Figs. 8 and 9, withn=1,1, =08,y =1, =3,8 =
0.5. The results show that the geometry of the hollow cylinder has
a significant effect on the wave propagation characteristic for small
values of ¥ (k < 1.5). However, as k — oo, the phase velocity al-
ways approaches that of the Rayleigh surface wave in an electroactive
half-space, as expected. Therefore, the varying of the radius ratio can
hardly affect the frequency/phase velocity at a high wave number.

The external electric field in vacuum is usually ignored in litera-
ture when traditional piezoelectric materials and structures are con-
sidered. For soft electroactive materials, it may play a critical role.
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Fig. 9. Phase velocity versus wave number for flexural waves in a hollow cylinder.

To study its effect, Figs. 10 and 11 display respectively the frequency
and velocity curves with and without considering the electric field
outside the material for A, = 0.83, y; = 1, y» = 3. Fig. 12 displays the
corresponding relative error between frequencies for a hollow cylin-
der with and without considering the exterior electric field. The rel-
ative errors are calculated with respect to the frequency accounting
for the exterior electric field, i.e., re = (@yith — Dwithout )/ Pwith- It 1S
shown that the wave dispersion behavior is dramatically influenced
by the electric field in the vacuum. We also point out that, due to the
transfer of energy into the vacuum, the frequency and phase velocity
increase when the exterior electric field is taken into consideration.
Thus, the exterior electric field stiffens the electroactive cylinder to
certain degree.

6. Conclusions

In this paper we applied the general nonlinear theory of electroe-
lasticity and the associated linear incremental theory proposed re-
cently by Dorfmann and Ogden to study the non-axisymmetric wave
motion in a hollow cylinder made of soft incompressible electroac-
tive material. In particular, uniform biasing fields were considered
which may be used to control the wave propagation in hollow cylin-

6 T T T T T T T T T

== including exterior electric field
== excluding exterior electric field

O 1 1 L 1 1 L 1 1
0 0.5 1 1.5 2 25 3 35 4 4.5 5

K

Fig. 10. Influence of external electric field on frequency for a hollow cylinder
(n=1/3).

4 T T T T T T T T T

== including exterior electric field
35F excluding exterior electric field i
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Fig. 11.
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Fig. 12. The relative error between frequencies for a hollow cylinder with and without
considering exterior electric field (n = 1/3).
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ders. Note that the control and adjustment of wave behavior becomes
very important in modern wave devices, especially in the so-called
phononic crystals or periodic structures.

From the analysis, we found that an isotropic electroelastic
material may exhibit during the incremental motion the feature of
materials with transverse isotropy when appropriate biasing fields
are applied, which greatly facilitate the analysis. In fact, we managed
to obtain an exact three-dimensional non-axisymmetric wave solu-
tion by introducing three displacement functions. While the earlier
results in Chen and Dai (2012) are fully recovered for axisymmetric
waves in a solid cylinder, the general dispersion relation can be
further degenerated to that for purely elastic cylinders in the absence
of any biasing field.

Numerical investigation of the fundamental modes (with the low-
est frequency) of the axisymmetric and the fundamental flexural
waves in the electroactive cylinder was conducted to examine the in-
fluences of the biasing fields and the geometry of the cylinder. The
effect of the external electric field outside the cylinder was also stud-
ied. Results show that the applied electric field has a stiffening effect
on the material, leading to increase in frequency or phase velocity
of waves in the cylinder. When the wave number becomes infinitely
large, the dispersion behavior becomes the same as the one for sur-
face waves in a half-space. This is just expected. Compared with a
thick-walled cylinder, a more rapid decrease of the velocity with the
wave number was observed in a thin-walled cylinder, but both ap-
proaching the Rayleigh wave velocity for an electroactive half-space
as k — oo. Besides, the exterior electric field also indicates a stiffening
effect on the electroactive cylinder, which may become significant in
certain situations. These observations and discussions provide a solid
theoretical basis for the design of acoustic wave devices with control-
lable properties.
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Appendix A. Components of the instantaneous electroelastic
moduli tensors

According to Dorfmann and Ogden’s theory (Dorfmann and Og-
den, 2005, 2006, 2010b), the following non-zero components of the
instantaneous electroelastic tensors can be obtained

Aotin = %{2922(1 + )»?)2
1
+ 27 [4QuA T+ QAT 220 A5 +4Q210AT + (14 49) ]}

4 2
Aonzz = 8 (1 +47) + 7[(911 + QAL+ @ (1+28)°)

Aoiizz = {912 (2 +649) + 203[(Qu1 + 22)A] +2Q0(1+ 4],

28
+2D2[2€06(1 + A9) + A(2216 + Q25 + QusAT + Qa545) ]}
2
Ap3333 = F{ZQH + 8912)\% + Q])\,;1 + 8922)\,;l + 292)\?
1
+ 2D§1 (4966 + 4956)‘-‘11 + st)\.?),
+DZ[8%16 + 1692627 + A1(4S215 + 696 + 80547 + 2s511) |}

l Qz =+ 2D396)\.2,

Aoz = 203 (@1 + D2 + A7), Aoizn = Y
1

A03131 = %{Q] + Qz)\% + Dg |:S25)\.A]l + QG (2 + )\.?)] }s
1

Aoizo1 = =211,

Ao212 = %(Qz +Q17).

A.
Fons = F{QZG(l +29)
+A% [916 + 5 (1 + )»6) + 21 (915 + Q4 + QuaA] + 924)»?)]},

LCoin = )\4 (96 +QsA] + Q6AS),

L33z = AS {916 +D7[29%6 + 325611
+ 23 (2946 + Qs + QasAT) |, +23[ 2926
+A2 (915 +2Q6 + 29502 + QAT + Q507 + 2924)\?)]},

2
Ko = F(Q“ + Q503 + Q6)Y),
1

Koz3z = % {)\?(QG + QS)\,? + 94)\?)
1

+2D2[ Q66 + 295677 + A5 (2946 + 255 + 2QasAT + Quarf) [}
where Q;; = 92Q/931;91;.

Appendix B. Some analytical results

The analytical expressions for various field variables in accordance
with Eqs. (44) and (55) are given as follows:
Torr = Ty cos(nf) cos(kz — wt),
Torg = Xyg sin(nb) cos(kz — wt),
Tor; = Xz cos(n) sin(kz — wt),
Ejg = gzﬁ sin(nf) sin(kz — wt),
Ejo; = —k¢p cos(nf) cos(kz — wt),

Djor = {e15 [—k(%xﬁ - C’) + W/] - 811¢_>’} cos(nd) sin(kz — wt),

Er, = —% = —AnZ o (kr) cos(nf) sin(kz — wt),
= 1 86%" = AntZu(kr) sin(nd) sin(kz — ot),

E:, = —85% = —AnkZ, (kr) cos(nd) cos(kz — wt),

Di, = &oE, = —AméoZ n (kr) cos(nf) sin(kz — wt),

where the prime indicates derivative with respect to r, and
n - -
2:rr = (Cll + P)(FW r K” )
1 , Nz n
+C127|: ( 'lp ?G>+?1ﬁ G:I +C13kW+€3]k¢ p
- n -
Y = C14(—1ﬁ” + ;G/ TG>
—(c15 + )1[n(—1/} - C’) — + EC_}]
15+P r r r I
n - - - -
Yz = —(Cs51 + P)k<?1ﬁ - G/) + Cs5. W' + e15¢”.

Appendix C. Elements of d;;

n., n
dig = (n + P+ Tgy) I:rf n(@alo) = n (054ro)i|
4 0

1 n
+C12 - [—n]’n (aqto) + r—jn (a4ro)] ,
0 0
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0

n n
dis=(n+p+75) |:r_y/n (0tgro) — r_zy" (a4ro)]
o]
1 , n
+Cr— [—nY n(0taro) + —Yn (cx4ro)],
* 7z 1 n2 !
dyj = —(cu +p+75)Z2"n(@r0) + - T_oZn (ajro) = Z'n(;to)
+ (c13kB1j + e31kBaj — B3j)Zn(ajro),
1| n?
da4 = —Ciay (aaTo) — (C15 + p + Tooo) - I:r_]n (aato) =J'y (014To):|s
0] o]
dog = —C14Y,) (Qtat)

1([n?
—(cs+p+ T:gg)r_o [r—an (0tato) — Y’n(a4ro)],

Qu
)
[y

n n
= Cia |:r_OZ’n(oejro) -5 (ozjro)i|

[
L 01 , n
- (C]5 +p+ Togg)r— [—nZ n(Oleg) + r—Zn(ocjro)],
[} [
n
d3g = —(Cs51 + Tgp, + P)kr—]n (aqr0),
[
n
d3g = —(Cs51 + Ty, + P)kr—yn (0ato),
[

dsj = (Cs51 + Topy + PIKZ n(tjT0) + C552 81,2 n(@¢T0)
+e1s 2,2 n (@),

n n
dys =0, dag=0, dyj= r_'32j2" (ajro) + T_E;zﬁuzn(ajro),
[ 0

n n
dsq = —k(eis + DZz)r—]n (aqto),  dsg = —k(eys + D’;z)r—Yn (0eato),
0 0

o
wul
&

|

= (e15 + D )KZ 1 (ot j1o) + €15 P12 n(ajro) — 11 B2iZ n(atjTy),
d]g = _SOE;szn (kr,,), dzg = 0,

d3g = €0ELK n(kry), dag = _rEK" (kro), dsg = oK' (kro),
0

n n
des = (et + P+ T3),) |:Fj/n (agri) — r—zfn (044ri)i|
i i
1 , n
+Cn— [—Tl] n(aar) + —Jn (014Ti)],
T Ti
* n / n
des = (et + P+ Tjy,) FY n(0ary) — r—ZYn(OMTi)
i i

1 n
+Cip— I:—ny/n (agr) + =Yy (Ol4ri)]s
Ti T
* 2 1 nZ !
doj = —(cn1 + P+ T)Z"n (1) + Ci2 |~ Zn (i) = Z'nla;m)
1 1
+ (c13kBii + es1kBai — B3i)Zn (1),
1| n?
d7s = —C1af" (aari) — (C1s + P+ T,-Zg); [T]" (o41i) _.],n(a4ri):|,
1 1

= —C1aY"n (aary)

Qu
~
>3

|

1 [n?
— (5 +p+ T{E@)r—i |:r—yn (aary)) =Y’y (0141’:')],

n n
dyj =14 [len(ajri) - r_zzn(ajri)i|
) ,

1

1 n
- (C15 +Dp+ Tfée);i [—nZ/n (Ole,') + r—iZn (ocjr,»)],

o
oo
S

|

n
= —(Cs51 + T3, + P)k;]n (0tary),
1

n
dgg = —(Cs51 + T35, + P)kFYn (aqry),
1

dsj = (Cs51 + Tis, + P)KZ n (atjry)
+ Cs5281iZ n (0t 17) + €15 BoiZ n (1),

n n
dos =0, dog=0, dyj= FIBZI‘ZH (ajry) + FE,'*Z,Blizn(ajri)»
1 1

n n
dios = —k(es + D?Z)F]n (aari),  digg = —k(eis + D?})FYn (oa1y),
1 1

dioi = (e1s + Dp)kZ n (1) + e1s BriZ n(@jri) — 11 Bl n(etjry),
deio = —&oEL kI (kri),  d710 =0,

n
dgio = €oEjl'n(kri), doyo = —an (kr),  dio10 = &ol'n(kry),
1

where, j =1,2,3,5,6,7.Especially, we have Z(-) = J(-) for j = 1,2, 3
and Z(-) =Y(-) for j =5, 6, 7. Furthermore, the notations o 4 = «;.
Bn(j+4) = Bnj(J,n = 1,2, 3) have been adopted.
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