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a b s t r a c t

Based on Dorfmann and Ogden’s nonlinear theory of electroelasticity and the associated linear incremental

theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylin-

der under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a

radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement.

Such biasing fields make the originally isotropic electroactive material behave during its incremental mo-

tion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following

analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly

solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel func-

tions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of

electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as

well as the geometrical parameters of the hollow cylinder have significant influences on the wave propaga-

tion characteristics.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Soft electroactive materials are smart materials, which may be

produced by embedding electroactive particles in a rubber-like ma-

trix such as silica gel and silicone rubber (Bossis et al., 2001). They

have attracted considerable interests and are widely used to develop

high-performance mechanical devices such as actuators and artificial

muscles because of their rapid response and large deformation under

electrical stimulus (Anderson et al., 2012; Henann et al., 2013).

Nonlinear analysis of soft electroactive materials or structures is

quite complex due to the strong nonlinearity as well as the elec-

tromechanical coupling. The formulation of the general nonlinear

theory of electroelasticity dates back to the 1950s. Toupin (1956,

1963) first established the theories governing the static and dy-

namic responses of elastic dielectrics. Tiersten (1971) later extended

Toupin’s study to the case with thermal effect. The nonlinear inter-

actions between the mechanical and electromagnetic fields are well

expounded in the books by Landau and Lifshitz (1960), Nelson (1979),

and Maugin (1988), to name a few. Theoretical development of the
∗ Corresponding author at: Department of Engineering Mechanics, Zhejiang Univer-
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onlinear theories of electroelasticity has been revived in the recent

ecade (Dorfmann and Ogden, 2005, 2006; McMeeking and Landis,

005; Mockensturm and Goulbourne, 2006; Bustamante et al., 2009;

uo, 2010) since new soft electroactive materials have been produced,

ndicating a very tempting prospect of applications.

The study on waves in electroactive materials not only presents

ignificant theoretical interests but also is of specific practical im-

ortance. Chai and Wu (1996) applied the Lothe–Barnett’s integral

ormalism to the study of surface waves in a prestressed piezoelec-

ric material. The initial stress effect on the reflection coefficients

f waves in a prestressed piezoelectric half-space was discussed in

recent paper by Singh (2010). Based on the nonlinear framework

or electroelasticity (Dorfmann and & Ogden, 2005, 2006) and

he associated linear incremental theory (Dorfmann and & Ogden,

010b), Dorfmann and Ogden (2010a) analyzed the plane waves

ropagating in a homogeneously deformed electroactive material

nd the surface waves in a homogeneously deformed half-space

f incompressible electroactive material. Axisymmetric waves in

re-stretched incompressible soft electroactive cylinders were ex-

mined in an exact manner by Chen and Dai (2012), also based on the

heoretical framework suggested by Dorfmann and Ogden. In a more

ecent paper, Su and Chen (2014) extended Chen and Dai’s work to a

ylindrical shell and further considered the influence of the electric

eld exterior to the shell. Almost simultaneously, Shmuel et al. (2012)

http://dx.doi.org/10.1016/j.ijsolstr.2015.12.003
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howed a strong effect of the biasing fields on the propagation of

ayleigh–Lamb waves in dielectric layers. Axisymmetric waves in

ielectric elastomer tubes under biasing fields were also studied by

hmuel and deBotton (2013), where the biasing field is produced by

pplying a voltage difference between the inner and outer surfaces of

he shell. This is quite different from that in Chen and Dai (2012) and

u and Chen (2014), which actually results in nonuniform biasing

elds, and makes it impossible to obtain exact solutions.

In this paper, we aim at developing an exact analysis of non-

xisymmetric waves in an infinite soft electroactive hollow cylinder

ubjected to uniform pre-stretch and/or biasing electric field. This is

n extension of our previous works mentioned above, where only the

imple axisymmetric case was considered. For the purpose of anal-

sis, the theories of nonlinear electroelasticity and linear incremen-

al field proposed by Dorfmann and Ogden (2005, 2006, 2010b) are

riefly reviewed. As in Chen and Dai (2012), uniform biasing fields

n cylindrical coordinates are assumed here to enable an exact analy-

is. The three-dimensional equations governing the small-amplitude

on-axisymmetric waves in incompressible soft electroactive hollow

ylinders under uniform biasing fields are simplified and decoupled

y introducing three displacement potentials. An exact solution is

hen derived in terms of Bessel functions. Numerical examples are

nally presented to show the effects of biasing fields and other pa-

ameters on the wave propagation behavior.

. Basic formulations

.1. Nonlinear theory of electroelasticity

Consider an incompressible continuous electroelastic body. We

enote the undeformed, stress-free configuration by Br, and its

oundary by ∂Br, with N being the outward unit normal. Any mate-

ial particle, say X, is labeled by a position vector X. Let Bt denote the

orresponding deformed configuration with ∂Bt the boundary and n

he outward unit normal. The deformation is described by the map-

ing x = χ(X, t) where χ is a continuous and twice differentiable

ector function. The deformation gradient is defined by F = Gradχ
ith the Cartesian components given by Fiα = ∂xi/∂Xα . b = FFT and

= FT F are the left and right Cauchy–Green tensors respectively. The

elations between the infinitesimal undeformed surface element dA

nd volume element dV and those deformed ones are specified by

da = JF−TNdA and dv = JdV respectively, where J = |F| is the deter-

inant of the deformation gradient F, also known as the volume ratio.

e have J = 1 for incompressible materials.

Under the ‘quasi-electrostatic approximation’, the appropriate

pecializations of Maxwell’s equations in the absence of free body

harges and currents are

url El = 0, Div Dl = 0, (1)

here El = FT E and Dl = F−1D are the Lagrangian counterparts of the

lectric field vector E and electric displacement vector D, respectively.

url and Div are the curl and divergence operators defined in Br, while

url and div will be used for the corresponding operators in Bt. The su-

erscript T denotes the matrix transpose. In the vacuum outside the

aterial, the electric field vector E∗ and electric displacement vector

∗ are related by

∗ = ε0E∗, (2)

here the constant ɛ0 is the permittivity of vacuum. Obviously, we

ave

url E∗ = 0, div D∗ = 0. (3)

he Maxwell stress in the vacuum is defined by

∗ = ε0

[
E∗ ⊗ E∗ − 1

2
(E∗ · E∗)I

]
. (4)
n the absence of surface charges, the jump conditions across the

oundary read as

(E − E∗) × n = 0, (D − D∗) · n = 0. (5)

he equations of equilibrium, in the absence of body forces, are

iv T = 0, (6)

here T = F−1τ = ∂�/∂F − pF−1 is the nominal stress tensor, with τ
eing the total Cauchy stress tensor, �(F, Dl) is an amended energy

unction defined per unit volume in the reference configuration, and

is a Lagrange multiplier associated with the incompressibility con-

traint. p is identified as a hydrostatic pressure in Holzapfel (2000)

nd Dorfmann and Ogden (2014).

The mechanical boundary condition is given by

n = ta + te, (7)

ere ta is the applied mechanical traction per unit area of ∂Bt, and

e = τ ∗n is the contribution to the traction due to the electric field

xterior to the body. Note that te is an unknown quantity, to be deter-

ined from the governing equations and the jump conditions.

.2. Linear theory for incremental field

Following the formulation of Dorfmann and Ogden (2010b), we

uperimpose an incremental deformation ẋ(X, t) along with an in-

rement in the electric displacement Ḋl upon the deformed configu-

ation. The superposed dot is used in this paper to denote incremen-

al quantities. The incremental forms of the governing Eqs. (1) and (6)

re

url Ėl0 = 0, div Ḋl0 = 0, (8)

iv Ṫ0 = ρu,tt , (9)

here u(x, t) = u(χ(X, t), t) = ẋ(X, t) should be noticed, Ṫ0 =
Ṫ, Ėl0 = F−TĖl , Ḋl0 = FḊl are the ‘push forward’ versions of Ṫ, Ėl , Ḋl

espectively. The linear incremental constitutive equations for an

sotropic electroactive material are

˙
0 = A0H + �0Ḋl0 + pH − ṗI, Ėl0 = �T

0H + K0Ḋl0, (10)

here H = grad u is the displacement gradient. The components of

he instantaneous electroelastic moduli tensors in Eq. (10) are

0piq j = FpαFqβAαiβ j = A0q jpi, 
0piq = FpαF−1
βq


αiβ = 
0ipq,

K0i j = F−1
αi

F−1
β j

Kαβ = K0 ji, (11)

ith

αiβ j = ∂2�

∂Fiα∂Fjβ
, 
αiβ = ∂2�

∂Fiα∂Dlβ
, Kαβ = ∂2�

∂Dlα∂Dlβ
. (12)

bviously, they depend on the applied biasing fields. Thus, the bias-

ng fields can be a useful means to adjust the instantaneous material

roperties, which in turn have a profound effect on the incremental

elds.

Similarly, the incremental forms of Maxwell’s equations outside

he material are

url Ė∗ = 0, div Ḋ∗ = 0. (13)

he incremental fields Ė∗ and Ḋ∗ are related by Ḋ∗ = ε0Ė∗. Accord-

ngly, the incremental forms of the boundary conditions (5) and (7)

re

(Ėl0 − Ė∗ − HTE∗) × n = 0, (Ḋl0 + HD∗ − Ḋ∗) · n = 0, (14)

˙ T
0
n = ṫA0 + τ̇ ∗n − τ ∗HTn, (15)

here ṫA0da = ṫAdA, with tA being the applied mechanical traction

er unit area of ∂Br, and τ̇ ∗ is the incremental Maxwell stress given

y

˙ ∗ = ε0[Ė∗ ⊗ E∗ + E∗ ⊗ Ė∗ − (E∗ · Ė∗)I]. (16)
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Fig. 1. An electroactive hollow cylinder under uniform electric and mechanical biasing

fields.
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The incremental incompressibility constraint relation is

div u = 0. (17)

3. Governing equations with biasing fields

3.1. Uniform biasing fields and instantaneous material properties

Consider an infinitely long hollow cylinder made of an incom-

pressible electroactive material. Its initial inner and outer radii are

Ri and Ro, which become ri and ro after deformation, respectively. We

now use cylindrical coordinate systems (R, �, Z) and (r, θ , z) to de-

scribe the undeformed and deformed configurations, respectively. To

simplify the problem and facilitate the exact solution, we consider a

uniform (pre-) deformation in the cylindrical coordinate system, as

shown in Fig. 1. Thus, we have

r = λ1R, θ = �, z = λ2Z, (18)

where λ1 (= ri/Ri = ro/Ro) and λ2 are positive constants, specifying

the stretches in the radial and axial directions, respectively. The bias-

ing electric displacement vector D is uniform and taken to be aligned

with the axial direction. Then, we have

F =

⎡
⎢⎢⎢⎢⎢⎣

∂r

∂R

∂r

R∂�

∂r

∂Z

r∂θ

∂R

r∂θ

R∂�

r∂θ

∂Z

∂z

∂R

∂z

R∂�

∂z

∂Z

⎤
⎥⎥⎥⎥⎥⎦ =

[
λ1 0 0
0 λ1 0
0 0 λ2

]
,

b = c =

⎡
⎣λ2

1 0 0

0 λ2
1 0

0 0 λ2
2

⎤
⎦, D =

{
0
0
Dz

}
. (19)

The incompressibility of the material requires

λ2 = λ−2
1 . (20)

According to Chen and Dai (2012), the non-zero components of the

total stress tensor and electric field vector in the hollow cylinder (ri ≤
r ≤ ro) are

τrr = τθθ = 2�1λ
2
1 + 2�2

(
I1λ

2
1 − λ4

1

)
− p,

τzz = 2�1λ
2
2 + 2�2

(
I1λ

2
2 − λ4

2

)
− p + 2�5D2

z + 4�6λ
2
2D2

z ,

Ez = 2
(
�4λ

−2
2 + �5 + �6λ

2
2

)
Dz, (21)

where �m = ∂�/∂ Im, and I1 = trc, I2 = 1
2 [(trc)2 − tr(c2)], I3 =

det c ≡ 1, I4 = Dl · Dl , I5 = Dl · (cDl ), I6 = Dl · (c2Dl ) are the six in-

dependent invariants (Dorfmann and Ogden, 2010a; Chen and Dai,

2012), For the current problem, I1 = 2λ2 + λ2 is the only invariant to

1 2
e involved. We can deduce the electric displacement component Dz

rom Eq. (21)3 if the component of electric field Ez is a priori known:

z = Ez

2
(
�4λ

−2
2

+ �5 + �6λ2
2

) . (22)

he jump conditions (5) at r = ri, where ni = (−1, 0, 0) and those

t r = ro, where no = (1, 0, 0) become E∗
z = Ez, E∗

θ
= D∗

r = 0, from

hich and in view of Eq. (4), we have for the exterior electric fields

(r < ri or r > ro)

∗
oz = E∗

iz = Ez = 2
(
�4λ

−2
2 + �5 + �6λ

2
2

)
Dz,

∗
oz = D∗

iz = 2ε0

(
�4λ

−2
2 + �5 + �6λ

2
2

)
Dz,

∗
orr = τ ∗

oθθ = −τ ∗
ozz = τ ∗

irr = τ ∗
iθθ = −τ ∗

izz

= −2ε0

(
�4λ

−2
2 + �5 + �6λ

2
2

)2
D2

z , (23)

here the first subscript o or i indicates the outer or inner electric

eld.

It is apparent that, different from Shmuel and deBotton (2013), the

tress and electric fields in the hollow cylinder and vacuum outside

he material are all uniform. In this case, the balance laws (3) and

6) are satisfied automatically. In general τrr �= τ ∗
orr and/or τrr �= τ ∗

irr
,

nd additional mechanical tractions may be required to act on the

oundaries of the hollow cylinder in order to satisfy the boundary

onditions.

The instantaneous electroelastic moduli tensors A0ijkl, K0ij, 
0ijk

an be evaluated according to Eq. (10), of which the nonzero com-

onents are given in Appendix A for easy reference.

.2. Boundary value problem of the incremental fields

Consider a small-amplitude non-axisymmetric wave motion su-

erimposed on the underlying deformed configuration of the hollow

ylinder as prescribed in the previous subsection. Thus, we have

= ur(r, θ , z, t)er + uθ (r, θ , z, t)eθ + uz(r, θ , z, t)ez,

˙
10 = Ḋ10r(r, θ , z, t)er + Ḋ10θ (r, θ , z, t)eθ + Ḋ10z(r, θ , z, t)ez,

ṗ = ṗ(r, θ , z, t). (24)

ccordingly, the displacement gradient is calculated to be

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ur

∂r

1

r

(
∂ur

∂θ
− uθ

)
∂ur

∂z

∂uθ

∂r

1

r

(
∂uθ

∂θ
+ ur

)
∂uθ

∂z

∂uz

∂r

1

r

∂uz

∂θ

∂uz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

. (25)

he non-zero components of the incremental stress and electric fields

re obtained from Eq. (10) as

˙
0rr = (A01111 + p)

∂ur

∂r
+ A01122

1

r

(
∂uθ

∂θ
+ ur

)

+ A01133
∂uz

∂z
+ 
0113Ḋl0z − ṗ,

˙
0θθ = A01122

∂ur

∂r
+ (A01111 + p)

1

r

(
∂uθ

∂θ
+ ur

)

+ A01133
∂uz

∂z
+ 
0113Ḋl0z − ṗ,

˙
0zz = A01133

∂ur

∂r
+ A01133

1

r

(
∂uθ

∂θ
+ ur

)
+ (A03333 + p)

∂uz

∂z

+
0333Ḋl0z − ṗ,

˙
0rθ = A01212

∂uθ

∂r
+ (A01221 + p)

1

r

(
∂ur

∂θ
− uθ

)
,
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˙
0rz = (A01331 + p)

∂ur

∂z
+ A01313

∂uz

∂r
+ 
0131Ḋl0r,

˙
0θ r = A01212

1

r

(
∂ur

∂θ
− uθ

)
+ (A01221 + p)

∂uθ

∂r
,

˙
0θz = A01313

1

r

∂uz

∂θ
+ (A01331 + p)

∂uθ

∂z
+ 
0131Ḋl0θ ,

˙
0zr = A03131

∂ur

∂z
+ (A01331 + p)

∂uz

∂r
+ 
0131Ḋl0r,

˙
0zθ = A03131

∂uθ

∂z
+ (A01331 + p)

1

r

∂uz

∂θ
+ 
0131Ḋl0θ ,

˙
l0r = 
0131

(
∂ur

∂z
+ ∂uz

∂r

)
+ K011Ḋl0r,

˙
l0θ = 
0131

(
∂uθ

∂z
+ 1

r

∂uz

∂θ

)
+ K011Ḋl0θ ,

˙
l0z = 
0113

[
∂ur

∂r
+ 1

r

(
∂uθ

∂θ
+ ur

)]
+ 
0333

∂uz

∂z
+ K033Ḋl0z. (26)

qs. (8), (9) and (17) can be written in the following component form

1

r

∂ Ėl0z

∂θ
− ∂ Ėl0θ

∂z
= 0,

∂ Ėl0r

∂z
− ∂ Ėl0z

∂r
= 0,

∂ Ėl0θ

∂r
+ Ėl0θ

r
− 1

r

∂ Ėl0r

∂θ
= 0, (27)

∂Ḋl0r

∂r
+ 1

r

(
∂Ḋl0θ

∂θ
+ Ḋl0r

)
+ ∂Ḋl0z

∂z
= 0, (28)

∂ Ṫ0rr

∂r
+ 1

r

∂ Ṫ0θ r

∂θ
+ Ṫ0rr − Ṫ0θθ

r
+ ∂ Ṫ0zr

∂z
= ρ

∂2ur

∂t2
,

∂ Ṫ0rθ

∂r
+ 1

r

∂ Ṫ0θθ

∂θ
+ Ṫ0θ r + Ṫ0rθ

r
+ ∂ Ṫ0zθ

∂z
= ρ

∂2uθ

∂t2
,

∂ Ṫ0rz

∂r
+ 1

r

∂ Ṫ0θz

∂θ
+ ∂ Ṫ0zz

∂z
+ Ṫ0rz

r
= ρ

∂2uz

∂t2
, (29)

∂ur

∂r
+ 1

r

(
∂uθ

∂θ
+ ur

)
+ ∂uz

∂z
= 0. (30)

he non-zero components of the incremental Maxwell stress are de-

ived from Eq. (16)

˙ ∗
mrr = τ̇ ∗

mθθ = −τ̇ ∗
mzz = −ε0E∗

mzĖ∗
mz

˙ ∗
mrz = τ̇ ∗

mzr = ε0E∗
mzĖ∗

mr, τ̇ ∗
mθ r = 0(m = o, i). (31)

e assume that there are no applied incremental mechanical trac-

ions on the two cylindrical surfaces, i.e., ṫA0 = 0 (r = ro, ri). Then, on

he boundaries ni = (−1, 0, 0) and no = (1, 0, 0), the electric bound-

ry conditions (14) lead to

˙
l0θ − Ė∗

mθ − E∗
mz

1

r

∂uz

∂θ
= 0, Ėl0z − Ė∗

mz − E∗
mz

∂uz

∂z
= 0,

˙
l0r + D∗

mz

∂ur

∂z
− Ḋ∗

mr = 0(r = rm; m = o, i); (32)

hile the mechanical boundary conditions (15) become

˙
0rr = τ̇ ∗

mrr − τ ∗
mrr

∂ur

∂r
, Ṫ0rθ = τ̇ ∗

mθ r − τ ∗
mθθ

1

r

(
∂ur

∂θ
− uθ

)
,

˙
0rz = τ̇ ∗

mzr − τ ∗
mzz

∂ur

∂z
(r = rm; m = o, i). (33)

imilarly, the electric field in vacuum exterior to the material should

atisfy the following electric balance equations

1

r

∂ Ė∗
mz

∂θ
− ∂ Ė∗

mθ

∂z
= 0,

∂ Ė∗
mr

∂z
− ∂ Ė∗

mz

∂r
= 0,

∂ Ė∗
mθ

∂r
+ Ė∗

mθ

r
− 1

r

∂ Ė∗
mr

∂θ
= 0, (34)
∂Ḋ∗
mr

∂r
+ 1

r

(
∂Ḋ∗

mθ

∂θ
+ Ḋ∗

mr

)
+ ∂Ḋ∗

mz

∂z
= 0, (35)

here Ḋ∗
m j

= ε0Ė∗
m j

(m = o, i; j = r, z).

. Exact wave solution and dispersion equation

.1. Simplification of equations

From Eqs. (27) and (34) we deduce the existence of electric poten-

ials φ and φ∗
m such that

˙
l0r = −∂φ

∂r
, Ėl0θ = −1

r

∂φ

∂θ
, Ėl0z = −∂φ

∂z
, (36)

˙ ∗
mr = −∂φ∗

m

∂r
, Ė∗

mθ = −1

r

∂φ∗
m

∂θ
, Ė∗

mz = −∂φ∗
m

∂z
(m = o, i). (37)

n this way, Eqs. (27) and (34) are automatically satisfied. From

q. (35), we know that φ∗
m should satisfy the Laplace’s equation

2φ∗
m + ∂2φ∗

m

∂z2
= 0 (m = o, i), (38)

here ∇2 = ∂2/∂r2 + (1/r)∂/∂r + (1/r2)∂2/∂θ2 is the two-

imensional Laplace operator. Simultaneously, the constitutive

elations (26) can be rewritten in terms of the electric potential φ
s

˙
l0r = e15

(
∂ur

∂z
+ ∂uz

∂r

)
− ε11

∂φ

∂r
,

˙
l0θ = e15

(
∂uθ

∂z
+ 1

r

∂uz

∂θ

)
− ε11

1

r

∂φ

∂θ
,

˙
l0z = e31

[
∂ur

∂r
+ 1

r

(
∂uθ

∂θ
+ ur

)]
+ e33

∂uz

∂z
− ε33

∂φ

∂z
,

˙
0rr = (c11 + p)

∂ur

∂r
+ c12

1

r

(
∂uθ

∂θ
+ ur

)
+ c13

∂uz

∂z
+ e31

∂φ

∂z
− ṗ,

˙
0θθ = c12

∂ur

∂r
+ (c11 + p)

1

r

(
∂uθ

∂θ
+ ur

)
+ c13

∂uz

∂z
+ e31

∂φ

∂z
− ṗ,

˙
0zz = c13

∂ur

∂r
+ c13

1

r

(
∂uθ

∂θ
+ ur

)
+ (c33 + p)

∂uz

∂z
+ e33

∂φ

∂z
− ṗ,

˙
0rθ = c14

∂uθ

∂r
+ (c15 + p)

1

r

(
∂ur

∂θ
− uθ

)
,

˙
0θ r = c14

1

r

(
∂ur

∂θ
− uθ

)
+ (c15 + p)

∂uθ

∂r
,

˙
0rz = (c551 + p)

∂ur

∂z
+ c552

∂uz

∂r
+ e15

∂φ

∂r
,

˙
0zr = c553

∂ur

∂z
+ (c551 + p)

∂uz

∂r
+ e15

∂φ

∂r
,

˙
0θz = c552

1

r

∂uz

∂θ
+ (c551 + p)

∂uθ

∂z
+ e15

1

r

∂φ

∂θ
,

˙
0zθ = c553

∂uθ

∂z
+ (c551 + p)

1

r

∂uz

∂θ
+ e15

1

r

∂φ

∂θ
, (39)

here

11 = 1/K011, ε33 = 1/K033, e15 = −
0131ε11,

31 = −
0113ε33, e33 = −
0333ε33, c11 = A01111 + 
0113e31,

12 = A01122 + 
0113e31, c13 = A01133 + 
0113e33,

33 = A03333 + 
0333e33, c551 = A01331 + 
0131e15,

14 = A01212, c15 = A01221,

552 = A01313 + 
0131e15, c553 = A03131 + 
0131e15. (40)
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Substituting Eq. (39) into Eqs. (28) and (29), we obtain[
e15∇2 + (e33 − e31 − e15)

∂2

∂z2

]
uz −

(
ε11∇2 + ε33

∂2

∂z2

)
φ = 0[

c11

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2

)
+ c14

1

r2

∂2

∂θ2
+ c553

∂2

∂z2

]
ur

+
[
(c15 + c12)

1

r

∂2

∂r∂θ
−(c11 + c14)

1

r2

∂

∂θ

]
uθ

+ (c13 + c551)
∂2uz

∂r∂z
+ (e31 + e15)

∂2φ

∂r∂z
− ∂ ṗ

∂r
= ρ

∂2ur

∂t2
,[

(c15 + c12)
1

r

∂2

∂r∂θ
+ (c11 + c14)

1

r2

∂

∂θ

]
ur

+
[

c14

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2

)
+c11

1

r2

∂2

∂θ2
+ c553

∂2

∂z2

]
uθ

+ (c13 + c551)
1

r

∂2uz

∂θ∂z
+ (e31 + e15)

1

r

∂2φ

∂θ∂z
− 1

r

∂ ṗ

∂θ
= ρ

∂2uθ

∂t2
,

(c551 + c13)

(
∂2

∂r∂z
+ 1

r

∂

∂z

)
ur + (c13 + c551)

1

r

∂2uθ

∂θ∂z

+
[

c552

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
+c33

∂2

∂z2

]
uz

+
[

e15

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
+ e33

∂2

∂z2

]
φ

− ∂ ṗ

∂z
= ρ

∂2uz

∂t2
. (41)

The above four equations along with the incompressibility constraint

(30) govern the incremental motion of the electroactive hollow cylin-

der in terms of five unknown functions ur, uθ , uz, φ, ṗ. It can be found

that these equations are similar in form to those for the infinitesi-

mal motion of a transversely isotropic elastic body (Ding et al., 2006).

Thus, we may introduce the following three displacement functions

(Ding et al., 2006)

ur = 1

r

∂ψ

∂θ
− ∂G

∂r
, uθ = −∂ψ

∂r
− 1

r

∂G

∂θ
, uz = W. (42)

By substituting Eq. (42) into Eqs. (41) and (30) and noticing the re-

lation c11 − c12 − c15 = c14, we can transform the original governing

equations into(
c14∇2 + c553

∂2

∂z2
− ρ

∂2

∂t2

)
ψ = 0,[

(c11 − c13 − c551)∇2 + c553
∂2

∂z2
− ρ

∂2

∂t2

]
G

− (e31 + e15)
∂φ

∂z
+ ṗ = 0,[

c552∇2 + (c33 − c13 − c551)
∂2

∂z2
− ρ

∂2

∂t2

]
W

+
(

e15∇2 + e33
∂2

∂z2

)
φ − ∂ ṗ

∂z
= 0,[

e15∇2 + (e33 − e31 − e15)
∂2

∂z2

]
W −

(
ε11∇2 + ε33

∂2

∂z2

)
φ = 0,

−∇2G + ∂W

∂z
= 0. (43)

It is seen that the resulting equations are much simpler than the orig-

inal ones. Moreover, the function ψ is successfully decoupled from

the other four unknown functions, which is also very beneficial to

the understanding of the induced wave motion.
.2. Exact non-axisymmetric wave solution

We assume the traveling wave solution in the following form

= ψ̄ (r) sin(nθ ) cos(kz − ωt), G = Ḡ(r) cos(nθ ) cos(kz − ωt),

= W̄ (r) cos(nθ ) sin(kz − ωt), φ = φ̄(r) cos(nθ ) sin(kz − ωt),

ṗ = p̄(r) cos(nθ ) cos(kz − ωt), (44)

here ω is the angular frequency, and n and k are the circumferen-

ial and axial wave numbers respectively. It is noted that n = 0 cor-

esponds to axisymmetric waves (for which ψ = 0 and uθ = 0) that

ave been studied by Chen and Dai (2012). By substituting the above

ave solution into Eq. (43) and making use of (43)5, we obtain

� + α2
4

)
ψ̄ = 0, (45)

(c11 − c13 − c551)� − c553k2 + ρω2]Ḡ − (e31 + e15)kφ̄ + p̄ = 0,

c552� − (c33 − c13 − c551)k2 + ρω2]W̄

+ (e15� − e33k2)φ + kp̄ = 0,

e15� − (e33 − e31 − e15)k2]W̄ − (ε11� − ε33k2)φ̄ = 0,

−�Ḡ + kW̄ = 0, (46)

here � = d
2/dr2 + (1/r)d/dr − n2/r2, and α2

4
= (ρω2 −

553k2)/c14 is the radial wave number of the shear waves that

an be expressed by the function ψ only. It is easy to show that

he dilation associated with the motion represented by ψ vanishes,

ndicating the motion is purely shear and elastic.

Eq. (45) is a Bessel’s equation of order n, whose solution is

¯ = A4Jn(α4r) + B4Yn(α4r), (47)

here Jn( · ) and Yn( · ) are the Bessel functions of the first and second

inds of order n, respectively. Eq. (46) looks more complex, but its

olution can be sought by assuming (Ding et al., 1997)

Ḡ

W̄

φ̄
p̄

⎫⎪⎬
⎪⎭ = Jn(αr)

⎧⎪⎨
⎪⎩

C1

C2

C3

C4

⎫⎪⎬
⎪⎭ + Yn(αr)

⎧⎪⎨
⎪⎩

D1

D2

D3

D4

⎫⎪⎬
⎪⎭, (48)

here α is the radial wave number for the coupled waves associated

ith the other four functions, and Cj and D j( j = 1 ∼ 4) are constants

o be determined. It is noted that for these coupled waves, the ax-

al component of the rotational vector vanishes. Substituting the so-

ution into Eq. (46) yields a set of linear equations about the 8 un-

nown constants. For non-trivial solutions to exist, the determinant

f the matrix consisting of the coefficients of Cj and D j( j = 1 ∼ 4)

ust vanish, giving rise to the following characteristic equation

g11 0 g13 1
0 g22 g23 g24

0 g32 g33 0
g41 g42 0 0

∣∣∣∣∣∣∣ = 0, (49)

here

11 = −(c11 − c13 − c551)α
2 + ρω2 − c553k2, g13 = −(e31 + e15)k,

22 = −c552α
2+ρω2− (c33 − c13 − c551)k2, g23 = −e15α

2 − e33k2,

32 = e15α
2 + (e33 − e31 − e15)k2, g33 = −ε11α

2 − ε33k2,

41 = α2, g42 = g24 = k. (50)

he elements of the determinant in Eq. (49) are functions of k, ω and

. Once k and ω are given, we can obtain from Eq. (49) three different
′s with Re[α j] > 0 or Re[α j] = 0 and Im[α j] > 0. Thus, the complete

oupled wave solution can be written as

Ḡ

W̄

φ̄
p̄

⎫⎪⎬
⎪⎭ =

3∑
i=1

⎧⎪⎨
⎪⎩

1
β1 j

β2 j

β3 j

⎫⎪⎬
⎪⎭[AjJn(α jr) + BjYn(α jr)], (51)
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here βn j(n = 1, 2, 3) are ratios between the constants and can be

btained as

1 j = −
α2

j

k
, β2 j =

e15α
2
j
+ (e33 − e31 − e15)k2

ε11α2
j
+ ε33k2

β1 j,

3 j = −1

k
{[ρω2 − c552α

2
j − (c33 − c13 − c551)k2]β1 j

− (e15α
2
j + e33k2)β2 j}( j = 1, 2, 3). (52)

t is noted that we do not distinguish above different cases regarding

he value of α (i.e., real, imaginary or complex) as Mirsky (1965) did.

his is simply because the present computational software such as

athematica or MatLab can perform the complex numerical calcula-

ion directly and accurately.

Similarly, we assume the solution of φ∗
m(m = o, i) in the form

∗
m = φ̄∗

m cos(nθ ) sin(kz − ωt). (53)

ubstituting into Eq. (38) leads to a modified Bessel’s equation

(� − k2)φ̄∗
m = 0. (54)

ts solution is

¯ ∗
m = A∗

mZn(kr), (55)

here A∗
m (m = o, i) are constants to be determined. Note that for

= o, we have Zn(·) = Kn(·) which is the modified Bessel function of

he second kind of order n; while for m = i, Zn(·) = In(·) is the modi-

ed Bessel function of the first kind of order n.

With the aid of Eqs. (44) and (55), the stresses, electric displace-

ents and electric fields in the hollow cylinder and vacuum exte-

ior to the material can be obtained. These expressions are given in

ppendix B for reference.

.3. Dispersion relation

Substituting the stresses, electric displacements and electric fields

nto the boundary conditions (32) and (33), noting that (32)1 is equiv-

lent to (32)2, we obtain for non-trivial solutions to exist

di j| = 0(i, j = 1 ∼ 10), (56)

hich is the dispersion equation. The elements of the determinant,

ij, are given in Appendix C.

If we consider a solid cylinder, the solution should be kept finite

t r = 0. Then B j = 0 ( j = 1 ∼ 4), and φ∗
i

= 0. The satisfaction of the

oundary conditions at the outer surface leads to

d11 d12 d13 d14 d19

d21 d22 d23 d24 d29

d31 d32 d33 d34 d39

d41 d42 d43 d44 d49

d51 d52 d53 d54 d59

∣∣∣∣∣∣∣∣
= 0. (57)

. Numerical examples and discussion

.1. Material model

For numerical illustration, we adopt the modified neo-Hookean

odel (Dorfmann and Ogden, 2010a) with the following free energy

unction

= 1

2
μ(I1 − 3) + 1

ε0
(γ1I4 + γ2I5). (58)

The first term is the energy function for the classical neo-Hookean

lastic material, with μ being the shear modulus of the material. The

econd term accounts for the interaction between the finite deforma-

ion and the electric field, and γ 1, γ 2 are two dimensionless electroe-

astic coupling parameters. If γ1 = 0 the energy function corresponds

o the so-called ideal dielectric elastomer (Zhao and Suo, 2007).
We obtain from Eqs. (21) 1,2, that

rr = τθθ = μλ2
1 − p, τzz = μλ2

2 − p + 2ε−1
0 γ2D2

z , (59)

hich shows that the parameter γ 1 does not affect the total stress,

hich can be immediately seen from the energy function (58) be-

ause I4 does not depend on F, and γ 2 is a measure of how the

tresses in the material are influenced by the electric field. If γ2 = 0,

he stress is independent of the electric field.

The Maxwell stresses and electric fields outside the body can be

btained from Eq. (23)

∗
oz = E∗

iz = Ez = 2ε−1
0

(
γ1λ

−2
2 + γ2

)
Dz,

∗
oz = D∗

iz = 2
(
γ1λ

−2
2 + γ2

)
Dz,

∗
mrr = τ ∗

mθθ = −τ ∗
mzz = −2ε−1

0

(
γ1λ

−2
2 + γ2

)2
D2

z (m = o, i). (60)

t is apparent that the parameter γ 1 characterizes the electric re-

ponse of the material in terms of the deformation.

The material parameters defined in Eq. (40) may be evaluated in

espect of the model (58) as

11 = c14 = μλ2
1, c12 = c13 = c15 = 0,

33 = μλ−4
1 + 2ε−1

0 γ2D2
z − 8ε−1

0
γ 2

2 D2
z

γ1λ4
1

+ γ2

,

551 = − 2ε−1
0

γ 2
2 D2

z

γ1λ
−2
1

+ γ2

, c552 = μλ2
1 + c551,

553 = μλ−4
1 + 2ε−1

0 γ2D2
z + c551,

11 = ε0

2
(
γ1λ

−2
1

+ γ2

) , ε33 = ε0

2
(
γ1λ4

1
+ γ2

) ,

15 = − γ2Dz

γ1λ
−2
1

+ γ2

, e31 = 0, e33 = − 2γ2Dz

γ1λ4
1

+ γ2

. (61)

ne may notice that, with the chosen constitutive law, c12 = c13 = 0,

hich looks a little strange at first glance since they generally corre-

pond to the Poisson effects in a usual elastic material. However, it

oes not indicate the disappearing of the Poisson effect (with regard

o the incremental motion), because of the constraint of material in-

ompressibility for incompressible materials.

We further assume here that there is no applied mechanical trac-

ion on the two cylindrical surfaces. Then p can be determined as

p = μλ2
1

− τ ∗
orr = μλ2

1
− τ ∗

irr
.

The numerical results will be displayed in terms of the following

on-dimensional quantities

= ωh0

cT

, κ = kh0, δ = Dz/
√

με0, (62)

here h0 ≡ Ro − Ri is the initial thickness of the hollow cylinder, and

T =
√

μ

ρ
(63)

s the transverse wave velocity in the undeformed isotropic electroac-

ive material.

.2. n = 0

We first examine the axisymmetric waves for which n = 0. In

his case, the displacements are independent of θ and the dispersion

q. (56) can be represented as the product of two determinants

1S2 = 0, (64)

here
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Fig. 2. Frequency spectrum for the first five axisymmetric torsionless wave modes in

a solid cylinder.

Fig. 3. Phase velocity curves for the first five axisymmetric torsionless wave modes in

a solid cylinder.
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S1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

d11 d12 d13 d15 d16 d17 d19 d110

d31 d32 d33 d35 d36 d37 d39 d310

d41 d42 d43 d45 d46 d47 d49 d410

d51 d52 d53 d55 d56 d57 d59 d510

d61 d62 d63 d65 d66 d67 d69 d610

d81 d82 d83 d85 d86 d87 d89 d810

d91 d92 d93 d95 d96 d97 d99 d910

d101 d102 d103 d105 d106 d107 d109 d1010

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

S2 =
∣∣∣∣d24 d28

d74 d78

∣∣∣∣. (65)

The dispersion equation

S1 = 0 (66)

represents the θ-independent coupled motion with both radial and

axial displacements but without the circumferential displacement

(i.e., uθ = 0). On the other hand,

S2 = 0 (67)

corresponds to the purely torsional motion with the only displace-

ment component uθ that is also independent of θ . It should be noted

that the axisymmetric torsional wave solution may be obtained by

exchanging cos (nθ ) and sin (nθ ) in Eq. (44) and then letting n = 0.

When a solid cylinder is considered, the dispersion Eq. (67) de-

generates to

S2 = d24 = 0, (68)

which can be rewritten as

λ1α4bJ0(α4b) − 2J1(α4b) = 0. (69)

Furthermore, if we omit the effect of biasing fields (λ1 = 1, Dz = 0),

we obtain

α2
4 = ρω2 − c553k2

c14

= ω2

c2
L

− k2. (70)

This is the classical result for torsional waves in elastic cylinders

(Achenbach, 1984).

Figs. 2 and 3 display respectively the dimensionless frequency ϖ
and phase velocity c = �/κ as functions of the dimensionless wave

number κ for the first five axisymmetric torsionless wave modes in

the soft electroactive solid cylinder with axial constraint λ2 = 1 sub-

jected to different biasing electric fields. The dimensionless electroe-

lastic coupling parameters are taken to be γ = 1, γ = 3. It can be
1 2
een that all the modes are dispersive and the fundamental mode is

he only one with no cut-off frequency. The case δ = 0 corresponds to

he particular case for which there is no biasing electric field. In this

ase, we actually obtain the dispersion curves in the two figures for

he family of axisymmetric torsionless wave modes in an elastic solid

ylinder. However, compared with Royer and Dieulesaint (2000), we

nd, due to material incompressibility, the branches associated with

ilatational motion are not included here. In the limit as κ → 0, the

hase velocity of the fundamental mode with the lowest frequency

ecomes equal to c = √
3 for δ = 0. This coincides with the classical

esult for an elastic solid cylinder (Mirsky and Herrmann, 1958). If we

hoose the dimensionless material constants to be γ1 = 1.5, γ2 = 2,

e obtain the same results, indicating that in the absence of elec-

ric field (δ = 0), the electroelastic coupling parameters have no in-

uence on the wave propagation characteristics. This actually can be

bserved directly from the analytical results in Eq. (61). We also note

hat, although the instantaneous dielectric constants ɛ11 and ɛ33 are

till affected by the electroelastic coupling parameters, we have in

his case ei j = 0. Thus, as can be seen from Eq. (46), the elastic and

lectric fields are decoupled from each other. The influence of the bi-

sing electric field can be seen from Fig. 3 clearly: The phase velocity

ncreases with the magnitude of the biasing field for both short and

ong waves. Moreover, there is a region that for long waves (with a

mall value of κ) the biasing electric field has a relatively small ef-

ect on the dispersion characteristics, while for short waves, the bi-

sing electric field changes shape of the dispersion curve quite ob-

iously. This region starts later for higher modes. In particular, the

elocity curve of the fundamental mode under a relatively large bias-

ng electric field becomes nonmonotonic — The phase velocity first

ncreases with the wave number, then arrives at a maximum, and

nally decreases with the wave number. A similar observation can

e obtained from the results presented in Shmuel et al. (2012). Such

nonmonotonic variation of dispersion curves should be a result of

omplex wave interaction in terms of geometric boundaries and ma-

erial properties.

Of special interest is the fundamental mode which is the most im-

ortant from a practical viewpoint since the vibration mode with the

owest frequency will be easily excited by the environmental distur-

ance which is usually with a low characteristic frequency. We there-

ore will present the results for the fundamental mode only in the

ollowing. Figs. 4 and 5 give the results for axisymmetric torsional

aves. We can see from Fig. 4 that there is a cutoff frequency ϖc

≈ 5.13) at κ = 0. That is, only for frequency ϖ > ϖc, there will be



Y.P. Su et al. / International Journal of Solids and Structures 81 (2016) 262–273 269

Fig. 4. Lowest frequency versus wave number for axisymmetric torsional waves in a

solid cylinder.

Fig. 5. Phase velocity versus wave number for axisymmetric torsional waves in a solid

cylinder.
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Fig. 6. Lowest frequency versus wave number for flexural waves in a hollow cylinder

(η = 1/3).

Fig. 7. Phase velocity versus wave number for flexural waves in a hollow cylinder

(η = 1/3).
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torsional wave propagating in a solid cylinder. While for ϖ < ϖc,

he wavenumber becomes imaginary, which corresponds to a non-

ropagating disturbance. The special case � = �c represents the

ransition from propagation to non-propagation. In this case, the solid

ylinder is in uniform vibration since κ = 0 indicates the wavelength

s infinitely long.

Since the biasing electric field leads to an obvious electroelastic

oupling, making the electroactive material behave like piezoelectric

aterial, the so-called piezoelectric stiffening effect (Yang, 2004) can

e clearly identified from these figures.

.3. n �= 0

Of the flexural waves with the components of displacement de-

endent on θ the family of waves specified by n = 1, known as the

undamental flexural waves is the most important. Figs. 6 and 7 show

he curves of fundamental frequency and velocity versus wave num-

er for the fundamental waves in the hollow cylinder subjected to

ifferent levels of pre-stretch. Here we fix the normalized electroe-

astic coupling parameters as γ = 1, γ = 3, the biasing electric dis-
1 2
lacement as δ = 0.5, and the radius ratio of the cylindrical shell as

= Ri/Ro = 1/3. The influence of the biasing mechanical field is evi-

ent: As the pre-stretch increases a rise in the frequency and velocity

s exhibited. However, for a finite structure, the pre-stretch does not

lways improve the global rigidity of the structure (and hence the fre-

uency) since a competition exists between the increasing size of the

tructure and the increasing elastic constants of the material (Wang

t al., 2013).

To examine the influence of the geometry of the hollow cylinder,

he frequency and phase velocity curves for different radius ratios are

ompared in Figs. 8 and 9, with n = 1, λ2 = 0.8, γ1 = 1, γ2 = 3, δ =
.5. The results show that the geometry of the hollow cylinder has

significant effect on the wave propagation characteristic for small

alues of κ (κ < 1.5). However, as κ → ∞, the phase velocity al-

ays approaches that of the Rayleigh surface wave in an electroactive

alf-space, as expected. Therefore, the varying of the radius ratio can

ardly affect the frequency/phase velocity at a high wave number.

The external electric field in vacuum is usually ignored in litera-

ure when traditional piezoelectric materials and structures are con-

idered. For soft electroactive materials, it may play a critical role.
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Fig. 8. Lowest frequency versus wave number for flexural waves in a hollow cylinder.

Fig. 9. Phase velocity versus wave number for flexural waves in a hollow cylinder.

Fig. 10. Influence of external electric field on frequency for a hollow cylinder

(η = 1/3).

Fig. 11. Influence of external electric field on velocity for a hollow cylinder (η = 1/3).

Fig. 12. The relative error between frequencies for a hollow cylinder with and without

considering exterior electric field (η = 1/3).
To study its effect, Figs. 10 and 11 display respectively the frequency

and velocity curves with and without considering the electric field

outside the material for λ2 = 0.83, γ1 = 1, γ2 = 3. Fig. 12 displays the

corresponding relative error between frequencies for a hollow cylin-

der with and without considering the exterior electric field. The rel-

ative errors are calculated with respect to the frequency accounting

for the exterior electric field, i.e., re = (�with − �without )/�with. It is

shown that the wave dispersion behavior is dramatically influenced

by the electric field in the vacuum. We also point out that, due to the

transfer of energy into the vacuum, the frequency and phase velocity

increase when the exterior electric field is taken into consideration.

Thus, the exterior electric field stiffens the electroactive cylinder to

certain degree.

6. Conclusions

In this paper we applied the general nonlinear theory of electroe-

lasticity and the associated linear incremental theory proposed re-

cently by Dorfmann and Ogden to study the non-axisymmetric wave

motion in a hollow cylinder made of soft incompressible electroac-

tive material. In particular, uniform biasing fields were considered

which may be used to control the wave propagation in hollow cylin-
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ers. Note that the control and adjustment of wave behavior becomes

ery important in modern wave devices, especially in the so-called

hononic crystals or periodic structures.

From the analysis, we found that an isotropic electroelastic

aterial may exhibit during the incremental motion the feature of

aterials with transverse isotropy when appropriate biasing fields

re applied, which greatly facilitate the analysis. In fact, we managed

o obtain an exact three-dimensional non-axisymmetric wave solu-

ion by introducing three displacement functions. While the earlier

esults in Chen and Dai (2012) are fully recovered for axisymmetric

aves in a solid cylinder, the general dispersion relation can be

urther degenerated to that for purely elastic cylinders in the absence

f any biasing field.

Numerical investigation of the fundamental modes (with the low-

st frequency) of the axisymmetric and the fundamental flexural

aves in the electroactive cylinder was conducted to examine the in-

uences of the biasing fields and the geometry of the cylinder. The

ffect of the external electric field outside the cylinder was also stud-

ed. Results show that the applied electric field has a stiffening effect

n the material, leading to increase in frequency or phase velocity

f waves in the cylinder. When the wave number becomes infinitely

arge, the dispersion behavior becomes the same as the one for sur-

ace waves in a half-space. This is just expected. Compared with a

hick-walled cylinder, a more rapid decrease of the velocity with the

ave number was observed in a thin-walled cylinder, but both ap-

roaching the Rayleigh wave velocity for an electroactive half-space

s κ → ∞. Besides, the exterior electric field also indicates a stiffening

ffect on the electroactive cylinder, which may become significant in

ertain situations. These observations and discussions provide a solid

heoretical basis for the design of acoustic wave devices with control-

able properties.
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ppendix A. Components of the instantaneous electroelastic

oduli tensors

According to Dorfmann and Ogden’s theory (Dorfmann and Og-

en, 2005, 2006, 2010b), the following non-zero components of the

nstantaneous electroelastic tensors can be obtained
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here �i j = ∂2�/∂ Ii∂ I j .

ppendix B. Some analytical results

The analytical expressions for various field variables in accordance

ith Eqs. (44) and (55) are given as follows:

˙
0rr = �rr cos(nθ ) cos(kz − ωt),

˙
0rθ = �rθ sin(nθ ) cos(kz − ωt),

˙
0rz = �rz cos(nθ ) sin(kz − ωt),

˙
l0θ = n

r
φ̄ sin(nθ ) sin(kz − ωt),

˙
l0z = −kφ̄ cos(nθ ) cos(kz − ωt),

˙
l0r =

{
e15

[
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(
n

r
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]
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m
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Zn(kr) sin(nθ ) sin(kz − ωt),

˙ ∗
mz = −∂φ∗

m

∂z
= −AmkZn(kr) cos(nθ ) cos(kz − ωt),

˙ ∗
mr = ε0Ė∗
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here the prime indicates derivative with respect to r, and
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ppendix C. Elements of dij
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here, j = 1, 2, 3, 5, 6, 7. Especially, we have Z(·) = J(·) for j = 1, 2, 3

nd Z(·) = Y (·) for j = 5, 6, 7. Furthermore, the notations α j+4 = α j .

n( j+4) = βn j( j, n = 1, 2, 3) have been adopted.
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