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Tunable Two-Way Unidirectional
Acoustic Diodes: Design and
Simulation
Predeformation simultaneously changes the effective material stiffness as well as the geo-
metric configuration and therefore may be utilized to tune wave propagation in soft pho-
nonic crystals (PCs). Moreover, the band gaps of soft PCs, as compared with those of the
hard ones, are more sensitive to the external mechanical stimuli. A one-dimensional tuna-
ble soft acoustic diode based on soft functionally graded (FG) PCs is proposed. The two-
way asymmetric propagation behavior is studied at the resonant frequency within the
band gap. Numerical results show that the operating frequency (i.e., the resonant peak)
of the soft graded acoustic diode can be altered by adjusting the mechanical biasing
fields (including the longitudinal prestress and the lateral equibiaxial tension). The
adjustment becomes significant when the strain-stiffening effect of the Gent hyperelastic
material is properly harnessed. Furthermore, the prestress or equibiaxial tension can
affect the two-way filtering of the soft FG PC in a separate and different manner. In addi-
tion, it is much easier to realize the tunable acoustic diode by exploiting soft FG materi-
als with stronger compressibility. It is shown that the introduction of acoustic impedance
is beneficial for predicting the tunable effects. The simulations and conclusions should
provide a solid guidance for the design of tunable two-way unidirectional acoustic diodes
made from soft hyperelastic materials. [DOI: 10.1115/1.4042321]

Keywords: tunable acoustic diode, functionally graded, phononic crystal, soft material,
biasing field

1 Introduction

Phononic crystals (PCs) have attracted considerable attention
from academia and industry alike due to their unique acoustic
properties since first proposed by Kushwaha et al. [1] in the
1990s. Based on the Bragg scattering mechanism or the locally
resonant mechanism [2], acoustic/elastic waves are prohibited to
propagate within certain frequency ranges, which are called band
gaps in PCs. This phenomenon can be used to design functional
devices such as acoustic diodes [3,4], acoustic cloaks [5–7], and
directional radiation devices [8,9].

Functionally graded materials (FGMs) are one particular type
of advanced engineering materials exhibiting inhomogeneous
material properties, which vary continuously in one or more direc-
tions. FGMs were first proposed and prepared by a group of

Japanese material scientists in the middle of 1980s, and since then
they have been widely used in aerospace, aircraft, civil engineer-
ing, and chemical industry [10–12]. Compared with the traditional
materials, FGMs can be designed to reduce thermal stresses, elim-
inate the sharp stress discontinuity, and increase the bonding
strength. Due to their excellent properties, many works have been
carried out to investigate elastic wave propagation in FGM struc-
tures. Chen et al. [13] presented a hybrid strategy by combining
the reverberation-ray matrix method and the state-space method
so as to obtain stable numerical results for waves propagating in
an elastic FGM plate at both small and large frequencies. Cao
et al. [14] studied Lamb wave propagation in a functionally
graded (FG) piezoelectric–piezomagnetic plate and presented the
influences of the gradient parameter on the dispersion curves. In
recent years, some efforts have been devoted to the study of wave
propagation in FG PCs. Fomenko et al. [15] considered the effects
of geometric and material parameters on the transmission behav-
iors and band structures of the in-plane elastic waves in FG
PCs. Guo et al. [16] discussed the impacts of FG interlayers on
the dispersion relations of elastic waves in one-dimensional
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piezoelectric/piezomagnetic PCs. Based on a graded PC plate,
Torrent et al. [17] designed an omnidirectional refractive device
for flexural waves in a thin plate. Liang et al. [18] constructed an
acoustic absorber by means of spatially varying refractive index.

Similar to the electrical and photonic devices, acoustic or
mechanical diodes can allow the acoustic or elastic waves to prop-
agate unidirectionally only in a certain frequency range. Many
works have been conducted to study the wave propagation charac-
teristics in acoustic or mechanical diodes made of nonlinear
media. Liang et al. [19] presented an acoustic diode which couples
a superlattice with a nonlinear medium and investigated the trans-
mission of acoustic waves as a function of frequency. Li et al.
[20] constructed a sonic-crystal-based acoustic diode which
breaks the spatial inversion symmetry and realized experimentally
the sound unidirectional transmission. Li et al. [21] recently stud-
ied the nonreciprocal wave phenomenon in a nonlinear acoustic
metamaterial which is composed of a linear PC and a nonlinear
layer.

In our previous work [22], we proposed a two-way acoustic fil-
ter for unidirectional transmission at the resonant frequency peak
within a band gap of the FG PC. The mechanism is that the spatial
symmetry of the PC is broken owing to the introduction of FG
properties. We found that the left-moving wave at a resonant fre-
quency peak is able to pass through the finite structure via reso-
nance, while the right-moving wave at the same frequency will be
blocked due to Bragg scattering, and vice versa. If we replace the
FGM with a homogeneous material, the transmission spectra for
waves propagating in opposite directions will be identical, and as
a result, there will be no unidirectional transmission for waves
within the band gap. It is worth noting that the PC in that work is
fabricated with traditional linear elastic materials of fixed material
and geometrical parameters, thus it is not easy to tune the operat-
ing frequency of such an acoustic diode.

In practical industrial applications, the frequencies of acoustic
waves in PCs to be filtered are generally complicated and varying
in a wide range. In order to realize tunable band gaps, a lot of
efforts have been done to design active PCs to satisfy the specific
needs, resulting in a revolution of tunable, active, or even smart
manipulation of acoustic/elastic waves. Goffaux and Vigneron
[23] proposed the concept of tunable PCs for the first time and
realized the tunability of band structures by rotating the solid
square scatters in an air/solid PC. Taking the magneto-electro-
elastic couplings into account, Wang et al. [24] investigated the
elastic wave propagation in PCs with piezoelectric and piezomag-
netic inclusions.

The band gaps in soft PCs are more sensitive to external stimuli
(e.g., mechanical loadings, electric biasing fields, light signals,
and temperature) than those in PCs made of hard materials.
Recently, soft PCs are attracting more and more interests from sci-
entists and engineers [25–27]. For the purpose of broadening the
tunable range of band gaps, it is of great importance to pay atten-
tion to actively tunable PCs made of soft materials. Based on the
finite deformation theory formulated by Ogden [28], Huang et al.
[29] showed that the band gaps of one-dimensional hyperelastic
PCs can be effectively tuned by adjusting the magnitude of the
longitudinal prestress while fixing the lateral equibiaxial deforma-
tion. Galich et al. [30] further analyzed the tunable band gaps in
soft PCs of hyperelastic materials with different constitutive mod-
els and concluded that the finite predeformation simultaneously
changes the effective material properties and filling ratio of PCs,
and as a result tunes the band gaps. Wu et al. [31] employed the
nonlinear electroelasticity theory and its incremental theory
[32,33] to investigate the propagation of longitudinal waves in a
soft electroactive PC cylinder subject to a combination of axial
force and electric field. Zhu et al. [34] explored the tuning effect
of the biasing electric displacement on obliquely incident SH
waves propagating in periodic dielectric elastomer laminates.
Bian et al. [35] investigated the thermally tunable band gaps in
one-dimensional PCs composed of two alternating heat sensitive
phases. It is worth mentioning that Wu et al. [36] recently

analyzed the axisymmetric guided waves in a pressurized FG elas-
tomeric hollow cylinder and presented a fascinating conclusion
that material tailoring can be utilized to manipulate elastic wave
propagations along with the adjustment of prestretch and pressure
difference.

In this paper, we propose a compressible FG hyperelastic PC to
study how mechanical biasing fields can be utilized to tune the
propagation of longitudinal waves and obtain a tunable two-way
acoustic filter or diode with a wide range of working frequency. It
should be pointed out that, to focus on longitudinal waves, we
have to consider compressible materials in the PC to ensure the
existence of pressure waves [30]. Nonlinear elasticity theory and
its incremental version are adopted to capture the material and
geometric nonlinearities of the soft PCs. The mechanism of the
active control of band gaps is easily understandable: the applica-
tion of mechanical loadings changes the geometry (filling ratio)
and effective material properties of the soft PCs, which in turn
affects the band gaps. We find that the propagation of longitudinal
waves in soft PCs can be significantly affected by the combination
of the mechanical biasing fields and the material gradient
characteristics.

This paper is structured as follows: Section 2 describes the
basic formulations of nonlinear elasticity theory and the associ-
ated linearized incremental theory. In the same section, we also
obtain the band structure of a nongraded periodic structure and the
transmission relation of a finite graded structure by using the
state-space method. Numerical results are presented in Sec. 3 to
elucidate the effects of the mechanical biasing fields as well as the
Poisson’s ratio on the wave transmission behavior in soft FG PCs.
Finally, in Sec. 4, we draw some conclusions.

2 Theoretical Model and Analysis

2.1 Brief Introduction to Nonlinear Elasticity and Incre-
mental Wave Motion. Consider a soft continuum body, with
each point in the undeformed or reference configuration labeled
by its position vector X. As the body undergoes deformation, the
particle at X in the reference configuration moves to a new posi-
tion x in the current configuration, by the following mapping:

x ¼ vðX; tÞ (1)

In the absence of body force, the equilibrium equation reads

DivT ¼ 0 (2)

where Div denotes the divergence operator with respect to the ref-
erence configuration. The nominal stress tensor T and the Cauchy
stress tensor s are connected by

T ¼ JF�1s (3)

where F ¼ @x=@X is the deformation gradient tensor, with the
Jacobian (i.e., local volume change) J ¼ detF > 0 being its
determinant.

The nonlinear constitutive relation for a compressible hypere-
lastic elastomer is

T ¼ @X
@F

(4)

where X is the energy density function. Here, we consider the so-
called ideal compressible Gent model [30,37]

X ¼ � l
2

Jm ln 1� I1 � 3

Jm

� �
� l ln J þ K

2
� l

Jm

� �
J � 1ð Þ2 (5)

where l and K are the shear modulus and the first Lam�e’s parame-
ter of the solid in the undeformed configuration, respectively, and

031010-2 / Vol. 86, MARCH 2019 Transactions of the ASME



I1 ¼ k2
1 þ k2

2 þ k2
3 represents the first invariant. The first Lam�e’s

parameter, Poisson’s ratio t, and shear modulus of the solid are
connected via K ¼ 2lt=ð1� 2tÞ. Jm, usually known as the Gent
constant, is the dimensionless stiffening parameter of the material.
When Jm !1, the neo-Hookean model is recovered from Eq.
(5). In this paper, we shall utilize the strain-stiffening effect of the
Gent materials to obtain a more pronounced tunable effect than
other materials (e.g., the neo-Hookean materials) through the
adjustment of the mechanical biasing fields.

By using Eqs. (3)–(5), the principal Cauchy stress components
can be obtained as [31]

s11 ¼
lJm

Jm � I1 þ 3
J�1k2

1 � lJ�1 þ K� 2l
Jm

� �
J � 1ð Þ

s22 ¼
lJm

Jm � I1 þ 3
J�1k2

2 � lJ�1 þ K� 2l
Jm

� �
J � 1ð Þ

s33 ¼
lJm

Jm � I1 þ 3
J�1k2

3 � lJ�1 þ K� 2l
Jm

� �
J � 1ð Þ

(6)

Consider an infinitesimal incremental perturbation _x superim-
posed on the finite predeformation. The linear governing equation
of any incremental wave motion is

Div _T ¼q0 _x;tt (7)

where the superposed dot indicates an incremental physical quan-
tity, the subscript comma indicates differentiation with respect to
the variables that follow, and q0 denotes the mass density of the
solid in the reference configuration. The expression for the incre-
mental nominal stress is

_T ¼A _F (8)

where _F ¼Gradu is the incremental deformation gradient tensor,
with uðx; tÞ ¼ _xðX; tÞ being the incremental displacement, and A
is a fourth-order referential elastic tensor, with components as
follows:

Aaibj ¼
@2X

@Fia@Fjb
(9)

The Eulerian counterpart of Eq. (7) is

div _T0 ¼qu;tt (10)

where _T0 ¼A0gradu is the push forward of Eq. (8), div and grad
represent the divergence and gradient operators with respect to the
current configuration, and q ¼ J�1q0 is the mass density of the
solid in the current configuration. A0 is the fourth-order instanta-
neous elastic tensor and is given in component notation by

A0piqj ¼ J�1FpaFqbAaibj (11)

In summary, the incremental motions of the solid with an
underlying large predeformation can be described by the afore-
mentioned formulations (Eqs. (7)–(11)).

2.2 Analysis of Soft Phononic Crystals. As shown in Fig. 1,
a PC composed of two alternating compressible hyperelastic
materials is investigated. The two material phases are arranged
periodically along the x3 direction and indicated by A and B,
respectively. Hereafter, ð•Þp (p¼A, B) signifies the physical
quantities of the p-phase in the PC. Geometrically, the initial
lengths of phases A and B are hA ¼ �Ah and hB ¼ �Bh, respec-
tively, where h is the initial length of the cell, and �A and �B ¼
1� �A are the initial volume fractions of phases A and B, respec-
tively. After applying a lateral equibiaxial prestretch k1

perpendicular to the x3 direction and keeping it fixed, the longitu-
dinal waves propagating in the PC can be tuned via the longitudi-
nal mechanical loading s0

33 along the x3 direction. According to
the expressions for the Cauchy stress components in Eq. (6), we
can determine the stretch ratios of the two phases k3A and k3B

along the x3 direction once the prestress s0
33 is given. The

deformed thicknesses of phases A and B then become

dA ¼ k3AhA; dB ¼ k3BhB (12)

The length of the deformed cell is d ¼ dA þ dB. The deformation
gradient tensor of the p-phase can be written as
Fp ¼ diag½k1; k1; k3p�. The layers are assumed to be perfectly
bonded together. Consequently, we can obtain the associated first
invariant and local volume change of the p-phase as follows:

I1p ¼ k2
1 þ k2

2 þ k2
3p; Jp ¼ k1k2k3p (13)

For 1D infinite layered PCs made of isotropic hyperelastic
materials, if all physical quantities are assumed to be functions of
x3 only, it is easy to know that the longitudinal displacement u3 is
decoupled from the other two displacement components [29,30].
In fact, from Eq. (10) with _T0 ¼A0gradu, we can deduce the gov-
erning equation for the incremental longitudinal waves propagat-
ing along the x3 direction as

A03333p
@2u3p

@x2
3

¼ qp

@2u3p

@t2
(14)

where the component of the instantaneous elastic tensor A03333p

can be written in terms of the principal stretches as

A03333p ¼ J�1
p

lpJmp

Jmp � I1p þ 3
k2

3p þ
2lpJmpk

4
3p

Jmp � I1p þ 3ð Þ2
þ lp

"

þ Kp �
2lp

Jmp

 !
J2

p

#
(15)

The state-space method is now adopted to investigate the band
structures of infinite nongraded periodic structures and the trans-
mission spectra of finite quasi-periodic FG soft PCs. Assume the
x3 direction to be parallel (or antiparallel) to the direction of wave
propagation. The incremental state vector can be defined by

Vt ¼
u3p

_T033p

( )
(16)

where u3p and _T033p ¼ A03333pð@u3p=@x3Þ are the incremental dis-
placement and Cauchy stress along the x3 direction, respectively.

Fig. 1 Diagram of a soft-graded PC under mechanical biasing
fields
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The constitutive relation and the equation of motion can be rewrit-
ten as

@u3p

@x3

¼ 1

A03333p

_T 033p (17)

@ _T 033p

@x3

¼ qp

@2u3p

@t2
(18)

The time–harmonic displacement of the incremental longitudinal
wave can be supposed as

u3pðx3; tÞ ¼ U3pðx3Þexpð�ixtÞ (19)

Substituting Eq. (19) into Eqs. (17) and (18) as well as eliminating
the time factor, we obtain

d

dx3

V ¼MV ¼
0

1

A03333p

�qpx
2 0

2
664

3
775V (20)

where M is the coefficient matrix of the p-phase, and V is the
amplitude of Vt.

For the finite FG PCs, it is difficult to achieve the analytical
solution directly due to the nonhomogeneous materials involved,
for which A03333p is a function of x3. In this case, the matrix M is
not constant, and the approximate laminate or multilayer tech-
nique [38] can be employed to obtain the results close to the origi-
nal solution. For this purpose, each layer (phase A or B) in the
undeformed configuration is equally divided into a few suffi-
ciently thin sublayers. In each sublayer, the material parameters
and prestretches are taken to be constants rather than variables,
and hence we can determine the deformed length Ddi of the ith
sublayer. Then M is treated as a constant matrix in each sublayer,
and the relation between the state vectors at the two sides of the
ith sublayer is established as

Vðiþ1Þ ¼ expðMimDdiÞVi (21)

where expðMimDdiÞ denotes the transfer matrix of the ith sub-
layer, and Mim indicates the constant coefficient matrix within the
sublayer which is obtained by letting each variable take its value
at the middle point of that sublayer. Finally, utilizing the continu-
ity conditions at each fictitious interface between two sublayers,
and those at the interface between phases A and B, we obtain the
transfer relationship between the incident side and the exit end as

Vnþ1 ¼MtV1 (22)

where Mt ¼ P1
i¼n expðMimDdiÞ is the global transfer matrix and n

is the total number of sublayers of the finite structure. It can be
seen that Mt becomes different when the incremental wave propa-
gates in the FG PCs along an opposite direction.

When calculating the band structure of the infinite nongraded
PCs, it is enough to consider one unit cell (one layer A and one
layer B, both being homogeneous). By exploring the Bloch condi-
tions along with the transfer relation at the two ends of the cell,
we can obtain

½Mt � expðikdÞI�VL ¼ 0 (23)

where k is Bloch wave number, VL denotes the state vector at the
left side of the unit cell, and I is an identity matrix of dimension
2� 2. Here Mt is the transfer matrix of the unit cell. The exis-
tence of nontrivial solutions requires the determinant of the coeffi-
cient matrix in Eq. (23) to be zero, i.e.,

det½Mt � expðikdÞI� ¼ 0 (24)

Then, the dispersion relation between k and x can be achieved by
solving the above equation.

To calculate the transmission spectrum of the finite FG PC, we
need to prescribe the boundary conditions at the two ends of the
structure in addition to the transfer matrix. Here, the incident side
is set to have a prescribed incremental displacement, and the exit
side is free of stress. Then, the transfer relation between the state
vectors at the two ends becomes

U
ðnþ1Þ
3

0

8<
:

9=
; ¼ Mt11 Mt12

Mt21 Mt22

" #
1

_T
ð1Þ
033

( )
(25)

where we have assumed the prescribed incremental displacement

to be 1 at the incident side, U
ðnþ1Þ
3 and _T

ð1Þ
033 indicate the incremen-

tal displacement at the exit or output side and the incremental
Cauchy stress at the incident side, respectively, and Mtij are the
elements of Mt. Once the geometric size and the mechanical bias-
ing fields of the soft PC are determined, the global transfer matrix
and hence the output displacement can be obtained uniquely

_T
1ð Þ

033 ¼ �
Mt21

Mt22

U nþ1ð Þ
3 ¼ Mt11 þMt12

_T
1ð Þ

033

(26)

At last, the transmission coefficient is defined by the logarithm of
the absolute value of the output incremental displacement over the
unit incident displacement

P ¼ lnjUðnþ1Þ
3 j ¼ lnjMt11 �Mt12Mt21=Mt22j (27)

3 Numerical Results and Discussion

Before discussing the numerical results, we will introduce the
following normalized physical quantities indicated by the tilde on
the top of the quantities: the dimensionless initial stress

~s0
33 ¼ s0

33=lr , the density ratio ~q0 ¼ q0=qr , the initial shear modu-
lus ratio ~l ¼ l=lr , and the normalized frequency and wave num-

ber ~x ¼ xh=
ffiffiffiffiffiffiffiffiffiffiffiffi
qr=lr

p
and ~k ¼ kh. Here, we choose the

hyperelastic material—the silicon rubber Zhermack Elite Double
32 [30] (with density qr ¼ 1050 kg/m3 and shear modulus lr ¼
0:444 MPa)—as the referential material.

Now, the band structure and the transmission characteristic of
wave propagation in the compressible hyperelastic PCs can be
studied based on the formulations outlined in Sec. 2. For the non-
graded hypothetical materials A and B, the dimensionless den-
sities are taken to be ~q0A ¼ ~q0B ¼ 1, and shear moduli are
~lA ¼ 2; ~lB ¼ 1. Moreover, assume hA ¼ hB ¼ 0:5; tA ¼ tB

¼ 1=3, and JmA ¼ JmB ¼ 10. When the dimensionless Gent con-
stant is infinitely large (Jm can be considered as infinite when tak-
ing the value of 1000 in the calculations), the Gent model can be
reduced to the neo-Hookean model. In this paper, we focus on the
tunable effects of the lateral equibiaxial tension and the longitudi-
nal prestress on the two-way filtering of FG hyperelastic PCs. The
finite structure in our previous work [22] has been proved to be
long enough, for which the transmission spectrum as a whole
agrees quite well with the band structure of the infinite periodic
structure. Therefore, the finite structure considered in this study
also consists of 12 A layers and 11 B layers and the undeformed
total thickness is D ¼ 12hA þ 11hB.

We have also simulated wave propagations in PCs made of
11 A layers and 11 B layers in both cases of homogeneous and FG
material properties. The numerical results indicate that there are
two resonant peaks in the first band gap for waves propagating
from left to right, but there is no resonant peak for the opposite
waves. Thus, we cannot realize the two-way unidirectional wave
transmission as in PCs made of 12 A layers and 11 B layers [22].
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Nevertheless, it is of great interest to know the effects of structural
topology on the wave propagation in finite PCs, which will be
studied in a further study.

3.1 Influence of Predeformation on Dispersion Behavior.
We first study the band structures of the nongraded PCs. Figure 2
gives the dispersion curves of the PC with a fixed lateral equibiax-
ial prestretch k1 ¼ 1 but subject to different prestresses. It can be
observed that due to the strain-stiffening effect, the first two band
gaps have a trend to move upward as ~s0

33 increases. Here, ~s0
33

denotes the normalized longitudinal prestress along the x3

direction.
It is interesting to see that band gaps close and reopen in the

vicinity of ~s0
33 ¼ 8. When band gaps close, the elastic waves are

able to pass through the structure at any frequency. In order to
explain this phenomenon, we need to introduce the acoustic
impedance defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qpA03333p

p
, which equals the product of

wave velocity and mass density and is a well-known parameter
which characterizes the wave propagation in a solid. Figures 3(a)
and 3(b) plot the acoustic impedance and k3p as functions of ~s0

33,
respectively. One could draw a conclusion that as the prestress
increases, the acoustic impedance of material B, although smaller
when ~s0

33 ¼ 0, grows more rapidly than that of material A. When
~s0

33 is around 8, the acoustic impedances of the two phases inter-
sect, and as a result the band gap vanishes. The underlying mecha-
nism is easy to understand: Since material B is softer, the
deformation of layer B under the prestress is larger, and thus
material B reaches the strain-stiffening stage earlier. As a result,
the effective material properties and volume fraction of layer B
become larger than those of layer A after a critical value of the
prestress. Besides, from Fig. 3(b) we see that the slope of the
k3p–~s0

33 curve decreases as ~s0
33 increases, illustrating the strain-

stiffening effect clearly.
To study the tunable effect of the prestress on hyperelastic PCs

of neo-Hookean model, we take Jm ¼ 1000. Figure 4 shows the
dispersion curves of the nongraded PC of neo-Hookean model
under different values of ~s0

33. In contrast to the Gent model, the

band gap frequency for the neo-Hookean model decreases slightly
with the increase of the prestress, which is obviously due to the
absence of the strain-stiffening effect.

Similar to Fig. 3, the variations of the acoustic impedance and
k3p with the prestress are depicted in Fig. 5 for the neo-Hookean
model. Note that with the increase of ~s0

33, both the acoustic impe-
dances of materials A and B decrease slightly and tend to be con-
stants. This explains why the band gaps of PCs are lowered down
a little for the neo-Hookean model. In addition, k3p almost
depends linearly on ~s0

33. Because the impact of the change in pre-
stress on the material of the neo-Hookean model is not very
obvious as shown by this example, we will pay attention only to
the compressible Gent model with strain-stiffening effect in the
following numerical calculations.

Different from Fig. 2, we now investigate the tunable band gaps
via changing the equibiaxial tension from 0.8 to 1.4 with the pre-
stress fixed as ~s0

33 ¼ 4. The results are presented in Fig. 6. It is
seen that the band gaps rise with the increase of k1, and the band
gaps do not vanish but get widened. Figures 7(a) and 7(b) illus-
trate the variations of the acoustic impedances and k3p with k1.
We observe that the acoustic impedance ratio of material A over
that of material B becomes larger when the equibiaxial tension
increases, despite the fact that the acoustic impedances of the two
phases are both reduced, and the band gaps lift up due to the
increase in stiffness. What’s more, it is clearly shown in Fig. 7(b)
that the length of the unit cell becomes smaller due to the Poisson
effect when k1 increases.

3.2 Influence of Predeformation on Transmission
Characteristics of Finite Functionally Graded Phononic
Crystals. After analyzing the band gaps of nongraded PCs, we
now make use of FGM in the design as in Ref. [22] to see its
effect. We suppose that the shear modulus of the p-phase varies in
the form of �lpðx3Þ ¼ Kpðx3 � D=2Þ þ ~lp in the undeformed con-
figuration, where Kp denotes the grading degree of material p. As

Fig. 3 Variations of (a) acoustic impedance and (b) stretch
along the x3 direction with prestress for the nongraded PC of
Gent model

Fig. 4 Dispersion relations of the nongraded PC of neo-
Hookean model under different prestresses

Fig. 5 Variations of (a) acoustic impedance and (b) stretch
along the x3 direction with prestress for the nongraded PC of
neo-Hookean model

Fig. 2 Dispersion relations of the nongraded PC of Gent model
under different prestresses
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we know, the introduction of spatially varying shear modulus
destroys the spatial symmetry of the finite PC and may result
in the separation of resonant frequency peaks within the band

gap [22]. Our calculation shows that the results by dividing each
unit cell into 20 and 22 sublayers are extremely close that the
errors can be ignored. Hence, the approximate scheme is consid-
ered to be with a good convergence when each unit cell is divided
into 20 layers.

The influence of the FG material properties on the band gaps of
PCs has been well studied in our previous work [22], which indi-
cates that we can change the separation distances of the two reso-
nant frequency peaks in the band gap by adopting different
grading degrees of the FGM for waves propagating in either direc-
tion. Just as done for the infinite nongraded PCs, we here first fix
k1 ¼ 1 and examine the effect of prestress on the transmission
spectrum of the finite FG PC. To display the influences of material
grading degrees on wave propagation under mechanical biasing
fields, we take KA ¼ 0:02 and KB ¼ 0:02 to enhance the asymme-
try of the finite structure. It is noted that the first band gap usually
is the commonly used one in engineering applications. Hence, we
show the transmission spectra in Fig. 8 around the first band gap

Fig. 6 Dispersion relations of the nongraded PC of Gent model under different equibiaxial ten-
sions and fixed prestress (~s330 5 4)

Fig. 7 Variations of (a) acoustic impedance and (b) stretch
along the x3 direction with equibiaxial tension for the non-
graded PC of Gent model

Fig. 8 Transmission spectra under different prestresses (KA 5 0:02; KB 5 0:02)
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under the prestresses ~s0
33¼0, 4, 8, and 12, respectively. ~xL and ~xR

indicated in the figure denote the resonant frequencies of waves
propagating along opposite directions. It is found from Fig. 8 that
when the prestress equals 8 the band gap of the PC will be closed.
Also, the resonant frequency peaks outside the band gap are sel-
dom affected by the grading degree of the material. However, we
can see from Figs. 8(a), 8(b), and 8(d) that the grading of material
properties induces the separation of the resonant frequency peaks
in the band gap and asymmetric transmission behaviors in oppo-
site propagation directions are gained. Additionally, ~xL and ~xR

vary along with the band gap when the prestress changes. Thus,
we can conclude that the two-way filtering of the finite FG PC can
be effectively tuned by altering the prestress.

We then analyze the influence of the lateral equibiaxial tension
on the finite FG PCs by keeping ~s0

33 ¼ 4. Without the loss of gen-
erality, here material A is regarded as FG and material B is kept
homogeneous (i.e., by assuming KA ¼ 0:02 and KB ¼ 0). Figure 9
displays the two-way transmission spectra of the finite FG PC cor-
responding to different values of k1 under the constant prestress.
The transmission spectra are consistent with the band structures of
the nongraded PC as given in Fig. 6, where the frequency of the

first band gap grows up with the equibiaxial tension. The resonant
frequencies in the band gap depend on the position of the band
gap, which is similar to the results caused by changing the pre-
stress. By altering the value of k1, we can also fulfill the tunable
asymmetric two-way filtering of waves in the band gap. Besides,
we can see that the frequency difference between the resonant
peaks ~xR � ~xL increases with k1.

In order to explain the mechanism of two-way filtering clearly,
we present the displacement distributions for two oppositely prop-
agating waves at the resonant frequency peaks based on the results
in Fig. 9(f). Figures 10(a) and 10(d) show that the wave is able to
pass through the structure at the corresponding resonant frequency
despite that it decays from the incident side due to the Bragg scat-
tering, and the result agrees well with the so-called surface-
localized mode as discussed in Ref. [39]. Moreover, as shown in
Figs. 10(b) and 10(c), waves are blocked to pass through the struc-
ture when their frequencies deviate from the resonant peaks.

3.3 Impact of Poisson’s Ratio on Tunability of Soft
Phononic Crystals. Different from the earlier results about the
effects of mechanical biasing fields and grading degrees of

Fig. 9 Transmission spectra at different equibiaxial tensions (KA 5 0:02; KB 5 0)
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materials A and B, we also want to study the impact of Poisson’s
ratio on the tunability of the nongraded PC. For brevity, only var-
iations of the acoustic impedance and k3p with different mechani-
cal loadings are presented here.

Figure 11(a) shows that the acoustic impedances hardly depend
on ~s0

33, when the prestress increases from 0 to 12. The variation of
k3p given in Fig. 11(b) shows the similar results to those of the
neo-Hookean model as given in Fig. 5(b) when the prestress is in
the range from 0 to 12. This is because material B has not reached
the strain-stiffening stage when the prestress varies in such a
range. Thus, for the material with a larger Poisson’s ratio, it needs
a larger mechanical load to achieve a pronounced effect on the
wave propagation behavior. Similarly, we depict in Fig. 12 the
acoustic impedance, k3p, and the acoustic impedance ratio (imped-
ance of material A over that of material B) at different Poisson’s
ratios (1/3 and 0.45) as functions of the lateral equibiaxial tension.
As we can see in Fig. 12(a), the acoustic impedance decreases and
the relative change is smaller as compared with the results pre-
sented in Fig. 7(a) due to the different Poisson’s ratios. Figure
12(b) shows that k3p decreases when the equibiaxial tension
increases and the layer even shrinks in the x3 direction when k1

reaches a sufficiently large value. Under this circumstance, the
curve of the acoustic impedance ratio for tA ¼ tB ¼ 0:45 tends to
be flat as shown in Fig. 12(c), and it implies that k1 does not affect
the band structure in an obvious manner. While the relative acous-
tic impedance for tA ¼ tB ¼ 1=3 increases sharply as the material
with a smaller Poisson’s ratio reaches the strain-stiffening stage
earlier in the same range of k1.

4 Summary

This paper illustrated a two-way unidirectional soft acoustic
diode that can be tuned by mechanical biasing fields, for the pur-
pose of broadening the operating frequencies. First of all, we
described the basic formulations considering the incremental lon-
gitudinal wave motions superimposed on the finite deformation
caused by mechanical biasing fields. Using the state-space method
and approximate laminate technique, we investigated the influen-
ces of longitudinal prestress and the lateral equibiaxial tension on
the band gaps of nongraded PCs especially for the Gent hyperelas-
tic model, and the transmission characteristics of finite FG PCs,
respectively. Through the numerical simulations, we arrived at the
following important findings: (1) due to the strain-stiffening
effect, the impacts of both prestress and equibiaxial tension on the
PCs of the Gent model are more pronounced than the neo-
Hookean model. (2) In the vicinity of a certain prestress, the band
gap may vanish and reopen with the increase of the prestress,
which is very interesting either theoretically or practically. (None-
theless, this phenomenon does not happen when changing the
equibiaxial tension under a constant prestress.) (3) The resonant
frequency peaks of waves propagating in opposite directions in
the band gap are separated by grading the material property, and
the two-way narrow pass-band changes along with the band gap
when the PC is subject to external mechanical biasing fields. (4)
Poisson’s ratio plays a key role in tuning the waves, and in fact
the material with a stronger compressibility can be more easily
tuned using the mechanical biasing fields. (5) The introduction of
acoustic impedance can do us a favor to predict the tunable effect
of the mechanical biasing fields.

Making use of the previously mentioned observations and the
underlying mechanisms as revealed in the paper, we can design a
one-dimensional, effectively tunable two-way acoustic diode. In
the band gaps, waves can propagate unidirectionally at the reso-
nant frequency peaks and the operating frequencies can be
adjusted easily by changing the mechanical biasing fields. For
example, the high-pass filter and low-pass filter may be realized
by using soft FG PCs of the Gent model and of the neo-Hookean
model, respectively, due to their different performances after con-
trolling the external fields.

Furthermore, we can make the dimensionless Gent constants or
mass densities of the two material phases different in a further
investigation. Even more measures to tune the acoustic diode can
be obtained if we replace the hyperelastic materials with dielectric

Fig. 10 Displacement distributions of two oppositely propa-
gating waves at the respective resonant frequency peaks
(~x 5 11:54; 11:84)

Fig. 11 Variations of (a) acoustic impedance and (b) stretch
along the x3 direction with prestress for the nongraded PC of
Gent model when tA 5 tB 5 0:45

Fig. 12 Variations of (a) acoustic impedance and (b) stretch
along the x3 direction for tA 5 tB 5 0:45, and (c) acoustic imped-
ance ratios for different Poisson’s ratios with equibiaxial ten-
sion for the nongraded PC of Gent model
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elastomers. In summary, the design of tunable acoustic diodes
shall be a very interesting and important topic to address in the
near future.
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