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ORIGINAL ARTICLE

Tunable flexural wave band gaps in a prestressed elastic beam with periodic
smart resonators
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aDepartment of Engineering Mechanics, Zhejiang University Hangzhou, China; bSchool of Civil Engineering, Guangzhou University,
Guangzhou, China; cState Key Lab of CAD & CG, Zhejiang University, Zijingang Campus, Hangzhou, China; dKey Laboratory of Soft Machines
and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China

ABSTRACT
This paper theoretically studies the propagation of flexural waves in an actively controllable locally
resonant (LR) beam. It is shown that the band gaps can be simultaneously tuned by the axial force
and the active electrical control actions. In some special cases, a super-wide pseudo-gap resulted
from the combination of the resonance and Bragg gaps can be observed. The condition of induc-
ing such pseudo-gap is further obtained with a closed-form expression with respect to the elec-
trical control parameter and the axial force, which can be explored to actively control the
broadband pseudo-gap by tuning these two parameters.
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1. Introduction

In the last few years, a variety of attentions have been
focused on the control, direction and manipulation of elas-
tic/acoustic waves in phononic crystals (PCs), the artificially
designed composites mainly consisting of a periodic array of
elastic scatters embedded in a host matrix with high imped-
ance contrast between scatters and matrix [1–13]. Owing to
their novel and unique properties (band gaps and negative
refraction etc.) usually not available in nature, PCs have the
promising applications as frequency filters, acoustic barriers,
vibration isolators, wave guiding, novel transducers, and
so on.

One of the most important properties of PCs is the exist-
ence of band gaps, within which the elastic waves are prohib-
ited to propagate through the structures by Bragg scattering
or/and local resonance (LR). The Bragg band gap is a result of
destructive interference between the scattered waves with the
periodic scatters embedded in matrix, while the LR band gap
is caused by the coupling between the propagating waves
along the matrix and the localized mode of the scatters. With
different mechanism, the lowest frequency of the LR band
could be two orders of magnitude lower than that of the
Bragg band [6], making it more feasible to engineer PCs with
low frequency through LR than Bragg scattering. Furthermore,
recent investigations have shown that deliberately tailored LR
PCs could possess more novel properties, such as negative
modulus [14] and [15], negative mass density [16], and double
negative parameters [8].

Tunability of band gaps in PCs to comply with varying
requirements needs becomes a new topic in recent years, and
a lot of valuable researches have been reported through

external stimuli, such as mechanical loading [17–19], electric
field [20–22], and magnetic field [23]. Gei et al. [24] found
that the tensile (compressive) prestress applied on the PCs
could increase (decrease) the frequency ranges of band gaps,
indicating that the prestress is a feasible way to control the
location of band gaps. Galich et al. [25] analytically studied
the wave propagation in layered hyperelastic composites and
concluded that band gaps could be largely tuned by the large
deformation. Furthermore, large deformation together with
material heterogeneity may induce elastic instabilities, leading
to dramatic microstructure transformations [26]. Recently, this
strategy has been employed to achieve remarkably tunable soft
PCs [27–29]. On the other hand, by combining the smart
materials with the active control technology, band gaps in PCs
can be actively controlled [30].

In a LR plate, a super-wide pseudo-gap, which is formed
by a combination of LR gap and Bragg gap, may emerge
when the pass band between the two gaps is extremely nar-
row [31]. This phenomenon was also observed in one-
dimensional LR PCs [32]. Controllable broadband pseudo-
gaps are highly desired by engineers and may have many
potential applications in the designs of tunable energy har-
vesters, active frequency filters, smart transducers, and so
on. In this paper, we will present an effective method to
control the pseudo-gap in a prestressed beam attached with
periodic smart resonators (electrically controlled piezoelec-
tric spring-mass oscillators). The influences of the axial force
and the active electrical control actions (AECAs) on the
Bragg gap and LR gap will be discussed in detail. We find
that the Bragg gap relies on the axial force while the LR gap
is significantly influenced by the AECAs on the resonators.

CONTACT Ronghao Bao brh@zju.edu.cn Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/umcm.
� 2018 Taylor & Francis Group, LLC

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES
https://doi.org/10.1080/15376494.2018.1553261

http://crossmark.crossref.org/dialog/?doi=10.1080/15376494.2018.1553261&domain=pdf
http://www.tandfonline.com/umcm
https://doi.org./10.1080/15376494.2018.1553261
http://www.tandfonline.com


Thus, an actively tunable super-wide pseudo-gap may be
achieved when the axial force and/or the AECAs are deliber-
ately controlled.

The paper is organized as follows. First, the explicit dis-
persion relation of the prestressed smart LR beam is derived
by the transfer matrix method (TMM). The gap edge fre-
quencies (GEFs) are solved explicitly from the dispersion
equation. Then, the condition of inducing pseudo-gap is
obtained with a closed-form expression with respect to the
axial force and the AECAs. Numerical simulations are finally
conducted to show that both the axial force and the AECAs
have significant effects on the properties of band gaps. In
particular, an actively tunable super-wide pseudo-gap is
observed, and its width and position increase with the axial
force. It is expected that this result can be applied to engin-
eer tunable acoustic metamaterials possessing super-wide
band gaps in the low frequency range.

2. Dispersion characteristics of a prestressed smart
LR beam

2.1. The beam structure

The smart LR beam considered in this work is a homoge-
neous thin Euler-Bernoulli beam periodically attached with
smart resonators, as sketched in Figure 1a. Each resonator
consists of a lumped mass connected to the beam with a
piezoelectric spring whose stiffness can be actively controlled
[30]. The lattice constant (spacing between two adjacent res-
onators) of the periodic structure is L, and the width and
thickness of the beam are H and b, respectively. mR and kR
are the lumped mass and the electrically controllable stiff-
ness of the piezoelectric spring, respectively. The beam is
subjected to an axial force N. AECAs are usually applied on
the piezoelectric springs to tune their stiffness as well. A
unit cell of the structure is schematically shown in
Figure 1b.

2.2. Characterization of the resonator

The constitutive equations of the piezoelectric spring are
given by [30]

Ep
rp

� �
¼ 1=jp �hp

�hp CD

� �
Dp

Sp

� �
(1)

where Ep, Dp, rp and Sp are the electrical field intensity,
electrical displacement, stress, and strain of the piezoelectric
spring, whilst jp, hp, and CD are the electrical permittivity,
piezoelectric stiffness, and elastic modulus of the piezoelec-
tric spring, respectively.

Assuming that the width, thickness and length of the
piezoelectric spring are bp, tp, and lp, respectively, we can
express Eq. (1) as

V=tp
Fp=bptp

� �
¼ 1=jp �hp

�hp CD

� �
Qp=bplp
zuj�zdjð Þ=lp

( )
(2)

where V, Fp, and Qp are the applied voltage, piezo-force,
and charge respectively. zuj and zdj represent the

displacement of the lump mass and deflection of the beam
at the connection point of the jth cell repectively. Therefore
zuj�zdj is the net displacement of the piezoelectric spring.
By eliminating the charge Qp in Eq. (2), we obtain

Fp ¼ �hpe
SbVp þ

btp CD � h2pe
S

� �
lp

2
4

3
5

zuj � zdjð Þ (3)

Let the voltage Vp be generated by the following feedback
control law

Vp ¼ �Kg zuj � zdjð Þ (4)

where Kg is the control gain to be determined by the
requirement. Then, the piezo-force can be expressed by

Fp ¼ kR zuj � zdjð Þ (5)

where the total stiffness of the piezoelectric spring kR is

kR ¼ kss þ kas (6)

with kas � hpeSbKg being the active stiffness due to con-
trol gain and kss � btpðCD � h2pe

SÞ=lp being the original pas-
sive structural stiffness of the piezoelectric spring,
respectively.

2.3. Transfer matrix method

For a time-harmonic flexural wave in the form of e�ixtwðxÞ
traveling along the beam with initial axial force N, the
deflection of the beam wðxÞ should satisfy the following dif-
ferential equation [24]

EI
d4w
dx4

�N
d2w
dx2

�qAx2w ¼ 0 (7)

where x is the angular frequency, q and E are the mass
density and Young’s modulus of the beam, A is the cross-
sectional area and I is the area moment of inertia with
respect to the neutral axis of bending, respectively, and
i ¼ ffiffiffiffiffiffiffi�1

p
. The solution of wðxÞ reads as

w xð Þ ¼ W1 cos kxþW2 sin kxþW3coshcxþW4sinhcx

(8)

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 4EIqAx2

p
2EI

s
; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 4EIqAx2

p
2EI

s

(9)

and the coefficients, Wiði ¼ 1; 2; 3; 4Þ, are to be deter-
mined with the proper boundary conditions (periodicity
condition for an infinite beam).

Figure 1. Schematics of a thin beam with oscillators.
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For the jth LR cell, by introducing the local coordinate
xj ¼ x�jL, the state vector of the jth LR cell, i.e.
VjðxjÞ ¼ ½wjðxjÞ w0

jðxjÞ w00
jðxjÞ w000

jðxjÞ �T , can be writ-
ten as

Vj xjð Þ ¼ T xjð ÞWj (10)

where wjðxjÞ is the beam deflection of the jth LR cell, the
superscript ‘T’ denotes the transpose of a matrix (vector),
the prime indicates the derivative with respect to the local
coordinate xj, and

T xjð Þ ¼
cos kxj sin kxj coshcxj sinhcxj

�k sin kxj k cos kxj csinhcxj ccoshcxj
�k2 cos kxj �k2 sin kxj c2coshcxj c2sinhcxj
k3 sin kxj �k3 cos kxj c3sinhcxj c3coshcxj

2
6664

3
7775

(11)

Wj ¼ W
jð Þ
1 W

jð Þ
2 W

jð Þ
3 W

jð Þ
4

h iT
(12)

The state vector at xj ¼ 0 can be written as

Vj 0ð Þ ¼ T 0ð ÞWj (13)

and the state vector at xj ¼ L is

Vj Lð Þ ¼ T Lð ÞWj (14)

Provided Fp and zuj in Eq. (5) are time-harmonic with
the same angular frequency x, i.e.,

Fp ¼ fje
�ixt; zuj ¼ vje

�ixt (15)

the equilibrium equation of the lump mass can be
expressed as

fj þmRx
2vj ¼ 0 (16)

and Eq. (5) can be written as

fj ¼ kR vj � wj Lð Þ	 

(17)

By eliminating vj in Eqs. (16) and (17), fj can be obtained as

fj ¼ �kR
mRx2

kR �mRx2
wj Lð Þ (18)

In the case of perfect bonding between the jth cell and the
(jþ 1)th cell, the following continuity conditions of displace-
ment, slope, bending moment, and shear force must be satisfied

wjþ1 0ð Þ ¼ wj Lð Þ
w0

jþ1 0ð Þ ¼ w0
j Lð Þ

�EIw00
jþ1 0ð Þ ¼ �EIw00

j Lð Þ
�EIw000

jþ1 0ð Þ ¼ �EIw000
j Lð Þ� kRmRx2

kR �mRx2
wj Lð Þ

(19)

Equation (19) can be rewritten in the form of state vectors

Vjþ1 0ð Þ ¼ PVj Lð Þ (20)

where

P ¼
1 0 0 0
0 1 0 0
0 0 1 0

�DR 0 0 1

2
664

3
775 (21)

and

DR ¼ kRmRx2

EI mRx2 � kRð Þ (22)

Combining Eqs. (13), (14), and (20) leads to

Vjþ1 0ð Þ ¼ PT Lð ÞT�1 0ð ÞVj 0ð Þ (23)

Consequently, for the elastic wave propagation along an
infinite periodic beam, the state vectors at the boundaries of
the unit cell should be related through the Bloch theorem
[33], i.e.,

Vjþ1 0ð Þ ¼ eikLVj 0ð Þ (24)

where the Bloch wave number k is to be determined
when the angular frequency x is given.

By inserting Eq. (23) into Eq. (24), nontrivial solutions
can be acquired when

jPT Lð ÞT�1 0ð Þ � eikLIj ¼ 0 (25)

where I is the 4� 4 identity matrix. The explicit expres-
sion of Eq. (25) is

cosh2 ikLð Þ þ a1cosh ikLð Þ þ a2 ¼ 0 (26)

where

a1 ¼ � cos kLð Þ þ cosh cLð Þ
� ��DRc sin kLð Þ�DRksinh cLð Þ

2 c2 þ k2
	 


kc

a2 ¼ cos kLð Þcosh cLð Þ þ DRc sin kLð Þcosh cLð Þ�DRk cos kLð Þsinh cLð Þ
2 c2 þ k2
	 


kc

(27)

Specially, when the axial force is removed, i.e. N ¼ 0, the
dispersion Eq. (26) is consistent with Eq. (36) in Ref. [31].

Obviously, Eq. (26) has the following two solutions:

k1 ¼ � i
L
cos h�1 �a1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21�4a2

p
2

 �

k2 ¼ � i
L
cos h�1 �a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21�4a2

p
2

 � (28)

According to Refs. [32] and [34], the gap edge frequen-
cies (GEFs) of the prestressed LR beam can be obtained
from

cos kLð Þ ¼ 61 (29)

By inserting Eq. (29) into Eq. (26), two groups of GEFs
can be found. The first group is determined by

cos kLð Þ ¼ 61 (30)

which gives the Bragg frequencies as

xB;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EI np=Lð Þ2 þ N
� �2�N2

4qAEI

s
n ¼ 1; 2; 3; :::ð Þ: (31)
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The second group is represented by the following two
equations:

x�2
R �x�2 ¼ mR ktanh cL=2ð Þ � c tan kL=2ð Þ½ �

2EIkc c2 þ k2
	 
 (32)

and

x�2
R �x�2 ¼ mR kcoth cL=2ð Þ þ ccot kL=2ð Þ½ �

2EIkc c2 þ k2
	 
 (33)

where xR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
kR=mR

p
. When the axial force is removed,

one has c ¼ k and Eqs. (32) and (33) will degenerate to Eqs.
(42) and (43) in Ref. [31], respectively.

3. Numerical examples and discussions

In this section, the propagation behavior of flexural waves in
an infinite prestressed smart LR beam will be studied
numerically and the attentions will be focused on the tuna-
bility of band gaps by adjusting the axial force and AECAs.
The parameters of the smart LR beam are taken as follows:
E ¼ 76:92 GPa, q ¼ 2700 kgm�3, H ¼ 0:002 m, L ¼ 0:1 m,
b ¼ 0:1 m, mR ¼ 0:027 kg, and kss ¼ 0:9593� 105 Nm�1.
To make the problem more clear, we further introduce the
relative magnitude of the active stiffness of the piezoelectric
spring, gas ¼ kas=kss, and the dimensionless axial
force �N ¼ N=EA.

To validate the present theoretical derivation and numer-
ical calculation, we here perform a comprehensive compari-
son. Firstly, the degenerated case where no control actions
are applied (i.e., �N ¼ 0 and gas ¼ 0) is examined. The band
structure calculated by Eq. (26) and that extracted from
Figure 2a in Ref. [31] are plotted together in Figure 2. It is
seen that the present theoretical results agree quite well with
the existing ones for the nonprestressed passive beam. On
the other hand, the results obtained by TMM and the plane
wave expansion method (PWEM) [31] are also shown in
Figure 3 for a prestressed passive beam with �N ¼
3:25� 10�4 and gas ¼ 0. In the calculation by PWEM, we
have used 121 plane waves in order to achieve a good con-
vergence of the results. It can be found that the results cal-
culated by the two methods are almost identical, which
again validates the TMM .

To clearly show the effect of the applied axial force on the
band structure, we combine the curves in Figures 2 and 3
together, and the results are shown in Figure 4. In each case
(�N ¼ 0 or �N ¼ 3:25� 10�4), there are two band gaps,
denoted as g1 (the lower band gap) and g2 (the higher band
gap), respectively. When the LR beam is stretched by an axial
force, the lower edge of g1 is upraised while the upper edge of
g1 almost keeps unchanged. Consequently, the gap width of g1
is narrowed. On the other hand, the lower and upper edges of
g2 are both raised up by the tensile force, but the width of g2
is narrowed. It is worth noting that gap g2 represents the
Bragg gap due to its strong dependance on N, while gap g1
represents the LR gap since its frequency range is not sensitive
to N1. In fact, the resonance frequency of the resonators in
this example is xR=2p ¼ 300 Hz, which locates within g1, and
the first order Bragg frequency is xB1=2p ¼ 484:1 Hz (for

�N ¼ 0) or xB1=2p ¼ 682:5 Hz (for �N ¼ 3:25� 10�4), which
is the lower GEF of g2 for each case.

Now, let’s turn to discuss the influence of AECAs on the
band structure. The dispersion curves of the LR beam with
and without AECAs are shown in Figure 5, where the axial
force is not considered. It can be observed from Figure 5
that: 1) the Bragg frequency, which is the lower GEF of g2,
is not affected by the AECA; 2) the two edges of gap g1 and

Figure 2. Comparison between the present results and the results in Ref. [31].

Figure 3. Comparison between the TMM and the PWE method.

Figure 4. The influence of axial force on the band structure.
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the higher edge of gap g2 are all raised up by the AECA; 3)
the gap widths of g1 and g2 are broadened, but the width of
the pass band between the two band gaps gets narrowed.

To clearly understand the effect of the AECA on the
characteristics of the gaps, the attenuation properties as
functions of x, which are calculated from Eq. (28), are plot-
ted in Figure 6, where the left panel represents the case of
gas ¼ 0, and the right panel represents the case of gas ¼ 1.
Here, the axial force is removed. It should be noted that, for
a given angular frequency, Eq. (26) has two solutions of
wave number k, i.e. Eq. (28). The wave attenuation coeffi-
cient is quantified by the smaller imaginary part of wave-
number, i.e. ImðkÞ [31], since it represents the less rapidly
decaying wave (the evanescent Bloch wave [34, 35]) that car-
ries energy faster. As expected, the edges of the gaps (corre-
sponding to nonzero attenuation coefficients) shown in
Figure 6 agree well with those shown in Figure 5. We
observe that for the case of gas ¼ 0, the attenuation proper-
ties of the two gaps are quite different from each other. Gap
g1 is characterized by a sharp maximum attenuation, but
gap g2 displays a considerably smooth profile of attenuation
over the gap range. This feature confirms that gap g1 is a
LR gap while gap g2 is a Bragg gap [6, 31], and [34].
However, when gas ¼ 1, the phenomena are quite different.
We can see that gap g1 displays a smooth profile (but not as

smooth as that of gap g2 for gas ¼ 0), while in gap g2 there
exists a sharp maximum attenuation (but not as sharp as
that of gap g1 for gas ¼ 0). Hence, gap g1 can be regarded as
a Bragg-dominant gap and gap g2 can be considered as a
LR-dominant gap. The above results indicate that the
natures of the two gaps can be exchanged by applying
the AECA.

The foregoing discussions show that both the axial force
and the AECA have significant effects on the band structure.
For a better knowledge of the dependence of the band gaps
on N and gas, we further examine GEFs as functions of
these two parameters. With the help of Eqs. (31)–(33), the
mappings of band gaps (g1 and g2) as functions of the axial
force are presented in Figure 7, where Figure 7a and b cor-
respond to gas ¼ 0 and gas ¼ 1, respectively. The red dashed
line denotes the first order Bragg frequency xB1 and the
black dot-dashed line denotes resonance frequency xR. In
Figure 7a, i.e. when gas ¼ 0, we observe that xR locates in
g1 and the position of g1 is not sensitive to �N , although its
width gets modestly narrowed by the axial force. We also
observe that the lower edge of g2 is determined by the first
order Bragg frequency xB1 and its position is significantly
increased by �N . Thus we refer to g1 as the LR gap but
regard g2 as the Bragg gap. In Figure 7b, i.e. when gas ¼ 1,
different phenomena can be observed. If the axial force
�N<�NI , where �NI is the critical axial force that makes the
pass band between gaps g1 and g2 extremely narrow, the
upper edge of g1 is determined by xB1; but when �N>�NI ,
the lower GEF of gap g2 is xB1. Thus we may conclude that
when �N<�NI gap g1 (g2) is a Bragg (LR) gap, but when
�N>�NI the natures of g1 and g2 are exchanged. The attenu-
ation properties corresponding to �N ¼ 0; gas ¼ 1 are

Figure 5. The effect of AECA on the band structure when �N ¼ 0.

Figure 6. The effect of AECA on the attenuation properties when �N ¼ 0. Left
panel: gas ¼ 0; right panel: gas ¼ 1.

Figure 7. Maps of the two gaps g1 and g2 as functions of the axial force. (a):
gas ¼ 0; (b): gas ¼ 0.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 5



presented in the left panel of Figure 8 while those for �N ¼
3:25� 10�4; gas ¼ 1 are given in the right panel. It can be
observed directly from Figure 8 that the natures of gaps g1
and g2 are exchanged by the axial force.

The variations of the band gaps as functions of the
ACEA are shown in Figure 9. The green domain denotes
gap g1, the blue domain represents gap g2, the black dot-
dashed line is the resonance frequency of the oscillators, and
the red dashed line represents the first order Bragg fre-
quency. We can observe the following phenomena. When
gas<gIas, where gIas is the critical electrical control parameter
making the pass band between the two gaps g1 and g2
extremely narrow, the resonance frequency xR locates in
gap g1, and the position of g1 increases with gas. We also
observe that the lower GEF of g2, determined by the first
order Bragg frequency xB1, remains unchanged. Thus when
gas<gIas, gap g1 can be regarded as the LR gap while gap g2
can be considered as the Bragg gap. This point has been
proved by the left panel of Figure 6. On the other hand,
when gas>gIas, it is observed that the higher GEF of g1 is
xB1 and remains unchanged, while the frequency range of
g2 increases with gas. Therefore we can regard gap g1 as the
Bragg gap and gap g2 as the LR gap if gas>gIas. This point
has also been proved by the right panel of Figure 6.

Surprisingly, we observe that xR will locate in the Bragg
gap or even in the pass band. To explain this seemingly
strange phenomenon, we take gas ¼ 2 and �N ¼ 0 as an

example and present the imaginary parts of wavenumbers in
Figure 10. It is seen that there are two limiting trends:
limx!xþ

R
½Imðk1LÞ� ! 0 and limx!x�

R
½Imðk2LÞ� ! 0. These

two limits lead to limx!x�
R
h ! 0 and limx!xþ

R
h ! 0, where

h denotes the attenuation coefficient. Thus, we can conclude
that the resonance frequency and its neighboring frequencies
locate in the pass band in this situation.

In Figures 7b and 9, we observe that in some special sit-
uations, the pass band between the two gaps g1 and g2 will
become extremely narrow, and a super-wide pseudo-gap, as
a combination of the LR and Bragg gaps, then emerge. This
phenomenon is very similar to that reported in Ref. [31].
The generation condition of such pseudo-gap is found to be

gas ¼
2EImR p2 þ C2ð Þp2C2

2 p2 þ C2ð ÞkssqAL4 þ kssmRp2CL3coth C=2ð Þ�1 (34)

where

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ �NAL2=I

q
(35)

The relation between gas and �N is presented in Figure 11.
It is shown that the generation condition of such pseudo-
gap is presented by an almost linear relation between gas
and �N .

Figure 8. The effect of axial force on the attenuation properties when gas ¼ 1.
Left panel: �N ¼ 0; right panel: N1 ¼ 3:25� 10�4.

Figure 9. Maps of the two gaps g1 and g2 as functions of gas when �N ¼ 0.

Figure 10. Imaginary parts of the wavenumbers when �N ¼ 0 and gas ¼ 2.

Figure 11. Generation condition of super-wide pseudo-gap.

6 W. ZHOU ET AL.



Figure 12 shows the mapping of the super-wide pseudo-
gap as a function of �N . Remind that the active stiffness (gas)
should also be controlled simultaneously in a way following
the relation (34). Here, the green domain is the pseudo-gap
range, the black dot-dashed line denotes resonance fre-
quency xR, and the red dashed line represents the first order
Bragg frequency xB1. We observe that both the location and
the gap width of the pseudo-gap increase with the axial
force �N . The contours of the attenuation properties of such
pseudo-gap in the �N�x plane are presented in Figure 13, in
which the amplitudes are distinguished by colors. It can be
seen that there is an extremely narrow pass band (denoted
as white range) locating at almost the center of the pseudo-
gap range, and the maximum attenuation coefficient locates
below but near this pass band.

As a conclusion, by simultaneously applying the axial
force and AECA that meet the condition (34), an actively
tunable super-wide pseudo-gap can be achieved.

4. Conclusion

In this paper, we have investigated the tunable band gaps in
a prestressed elastic beam with periodically attached

piezoelectric spring-mass resonators. The AECA is employed
to tune the stiffness of the piezoelectric spring. By using the
transfer matrix method, the dispersion relation of the system
is obtained in a simple and explicit form, which is a quadric
equation of coshðikLÞ. Then two explicit solutions of kðxÞ
are solved from the dispersion equation, which can be used
to quantify the wave attenuation performance of the band
gaps. Furthermore, the GEFs are given explicitly to establish
the band gap ranges.

Numerical examples show that the LR gap and Bragg gap
coexist in the stretched smart LR beam owing to the coexist-
ence of the LR and structural periodicity. We also find that,
by changing the axial force and/or the AECA, the width and
location of both the LR gap and Bragg gap can be tuned
actively. Furthermore, the natures of the two neighboring
band gaps may be exchanged. In particular, a super-wide
pseudo-gap formed by a combination of the LR gap and
Bragg gap will emerge if the axial force and the ACEA are
applied appropriately. Inside the pseudo-gap, there is an
extremely narrow pass band. The generation condition of
such pseudo-gap is further obtained, which explicitly relates
the AECA to the axial force. Then by tuning the axial force
and the AECA simultaneously, the broad pseudo-gap can be
actively controlled provided that the derived condition is
met. The present study can help us understand the behavior
of the actively tunable LR beam, and promise many poten-
tial applications in the fields including vibration isolators,
frequency filters, and new smart transducers. In addition,
the super-narrow pass band located in a wide pseudo-gap
may provide a new method to design actively tunable selec-
tors of pure frequency.
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